Solveeit Logo

Question

Question: The value of $\sum_{m=1}^{n} tan^{-1}(\frac{2m}{m^4+m^2+2})$ is:...

The value of m=1ntan1(2mm4+m2+2)\sum_{m=1}^{n} tan^{-1}(\frac{2m}{m^4+m^2+2}) is:

A

tan1(n2+n)tan^{-1}(n^2+n)

B

tan1(n2+n+1n2+n+2)tan^{-1}(\frac{n^2+n+1}{n^2+n+2})

C

tan1(nn+1)tan^{-1}(\frac{n}{n+1})

D

tan1(n2+nn2+n+2)tan^{-1}(\frac{n^2+n}{n^2+n+2})

Answer

tan^{-1}(\frac{n^2+n}{n^2+n+2})

Explanation

Solution

The given series term tan1(2mm4+m2+2)tan^{-1}(\frac{2m}{m^4+m^2+2}) is transformed using the identity tan1(X)tan1(Y)=tan1(XY1+XY)tan^{-1}(X) - tan^{-1}(Y) = tan^{-1}(\frac{X-Y}{1+XY}).

The denominator m4+m2+2m^4+m^2+2 is rewritten as 1+(m2m+1)(m2+m+1)1+(m^2-m+1)(m^2+m+1).

The numerator 2m2m is the difference (m2+m+1)(m2m+1)(m^2+m+1) - (m^2-m+1).

Thus, the general term becomes tan1(m2+m+1)tan1(m2m+1)tan^{-1}(m^2+m+1) - tan^{-1}(m^2-m+1).

This is a telescoping series. When summed from m=1m=1 to nn, most terms cancel out, leaving tan1(n2+n+1)tan1(1)tan^{-1}(n^2+n+1) - tan^{-1}(1).

Applying the tan1(X)tan1(Y)tan^{-1}(X) - tan^{-1}(Y) identity again with X=n2+n+1X=n^2+n+1 and Y=1Y=1, we get tan1(n2+nn2+n+2)tan^{-1}(\frac{n^2+n}{n^2+n+2}).