Solveeit Logo

Question

Question: The value of \(\sum_{1 \leq i < j \leq}^{}{\sum_{n - 1}^{}{(i.j)}}\)<sup>n</sup>C<sub>i</sub> .<sup>...

The value of 1i<jn1(i.j)\sum_{1 \leq i < j \leq}^{}{\sum_{n - 1}^{}{(i.j)}}nCi .nCj is equal to –

A

n22\frac{n^{2}}{2} (22n–22n–2Cn–1)

B

n22\frac{n^{2}}{2} (22n–2 + 2n–2Cn–1)

C

n2(22n–2 + 2n–2Cn–1)

D

n2 (22n–22n–2Cn–1)

Answer

n22\frac{n^{2}}{2} (22n–22n–2Cn–1)

Explanation

Solution

1i<jn1(i.nCi)\sum_{1 \leq i < j \leq}^{}{\sum_{n - 1}^{}{(i.^{n}C_{i})}} (j . nCj)

= n21i<jn1n1Ci1.n1Cj1n^{2}\sum_{1 \leq i < j \leq}^{}{\sum_{n - 1}^{}{n - 1C_{i - 1}.^{n - 1}C_{j - 1}}}

= n2.(22(n1)2(n1)Cn12)\left( \frac{2^{2(n - 1)} -^{2(n - 1)}C_{n - 1}}{2} \right).