Solveeit Logo

Question

Mathematics Question on Permutations

The value of r=1nnPrr!\sum^{n}_{r =1} \frac{^nP_r}{r!} is :

A

2n2^n

B

2n12^n - 1

C

2n12^{n - 1}

D

2n+12^n + 1

Answer

2n12^n - 1

Explanation

Solution

We know nPr=nCr(r)!{^nP_r} = {^nC_r} (r) ! nPrr!=nCr\Rightarrow \, \frac{^nP_r}{r!} = {^nC_r} Take r=1n\sum^n_{r = 1} on both sides, we get r=1nnPrr!=r=1nnCr\sum^{n}_{r=1} \frac{^{n}P^{r}}{r!} = \sum^{n}_{r=1} {^{n}C_{r}} =nC1+nC2+nC3+.....+nCn= ^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ..... +^{n}C_{n} =(nC0+nC1+nC2+....+nCn)1= \left(^{n}C_{0} + ^{n}C_{1} + ^{n}C_{2} + ....+^{n}C_{n}\right) - 1 =2n1= 2^{n} - 1