Solveeit Logo

Question

Question: The value of \(\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} ...

The value of r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} is equal to:
A. 680680
B. 10851085
C. 560560
D. 12401240

Explanation

Solution

In this question, we are given r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} and we need to find its value.
We will use the formula:
nCm=!n!m.!nm{}^n{C_m} = \dfrac{{\left| \\!{\underline {\, n \,}} \right. }}{{\left| \\!{\underline {\, m \,}} \right. .\left| \\!{\underline {\, {n - m} \,}} \right. }} where !n=1.2.3.4........n\left| \\!{\underline {\, n \,}} \right. = 1.2.3.4........n.Using these concepts we try to solve the question.

Complete step-by-step answer:
In this question, we need to find the value of r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} (1) - - - - (1)
Here firstly we reduce r2(15Cr15Cr1){r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)into a simpler form and then put summation sign.
We know that
nCm=!n!m.!nm{}^n{C_m} = \dfrac{{\left| \\!{\underline {\, n \,}} \right. }}{{\left| \\!{\underline {\, m \,}} \right. .\left| \\!{\underline {\, {n - m} \,}} \right. }} (2) - - - - - (2)
Where !n=1.2.3.4........n\left| \\!{\underline {\, n \,}} \right. = 1.2.3.4........n
Now using (2), we get
15Cr=!15!r.!15r{}^{15}{C_r} = \dfrac{{\left| \\!{\underline {\, {15} \,}} \right. }}{{\left| \\!{\underline {\, r \,}} \right. .\left| \\!{\underline {\, {15 - r} \,}} \right. }} (3) - - - - - - (3)
And again using (2), we get
15Cr1=!15!(r1).!15(r1){}^{15}{C_{r - 1}} = \dfrac{{\left| \\!{\underline {\, {15} \,}} \right. }}{{\left| \\!{\underline {\, {(r - 1)} \,}} \right. .\left| \\!{\underline {\, {15 - (r - 1)} \,}} \right. }}
15Cr1=!15!(r1).!16r{}^{15}{C_{r - 1}} = \dfrac{{\left| \\!{\underline {\, {15} \,}} \right. }}{{\left| \\!{\underline {\, {(r - 1)} \,}} \right. .\left| \\!{\underline {\, {16 - r} \,}} \right. }} (4) - - - - - (4)
Now substituting these values from (3) and (4) in (1),
r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} =r=115r2= \sum\limits_{r = 1}^{15} {{r^2}} (!15!r.!15r!15!r1.!16r)\left( {\dfrac{{\dfrac{{\left| \\!{\underline {\, {15} \,}} \right. }}{{\left| \\!{\underline {\, r \,}} \right. .\left| \\!{\underline {\, {15 - r} \,}} \right. }}}}{{\dfrac{{\left| \\!{\underline {\, {15} \,}} \right. }}{{\left| \\!{\underline {\, {r - 1} \,}} \right. .\left| \\!{\underline {\, {16 - r} \,}} \right. }}}}} \right)
!n=1.2.3.4........n\left| \\!{\underline {\, n \,}} \right. = 1.2.3.4........n and hence we get,
=r=115r2= \sum\limits_{r = 1}^{15} {{r^2}} (!15!r1!16r!15!r!15r)\left( {\dfrac{{\left| \\!{\underline {\, {15} \,}} \right. \left| \\!{\underline {\, {r - 1} \,}} \right. \left| \\!{\underline {\, {16 - r} \,}} \right. }}{{\left| \\!{\underline {\, {15} \,}} \right. \left| \\!{\underline {\, r \,}} \right. \left| \\!{\underline {\, {15 - r} \,}} \right. }}} \right)
=r=115r2= \sum\limits_{r = 1}^{15} {{r^2}} (16rr)\left( {\dfrac{{16 - r}}{r}} \right)
=r=115(16rr2)= \sum\limits_{r = 1}^{15} {(16r - {r^2})}
So now separating both the terms,
r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} =r=11516rr=115r2= \sum\limits_{r = 1}^{15} {16r - \sum\limits_{r = 1}^{15} {{r^2}} } (5) - - - - - (5)
Now we know that
n=1mn=m(m+1)2\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2} (6) - - - - - (6)
n=1mn2=m(m+1)(2m+1)6\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6} (7) - - - - - (7)
Using (6) and (7) in (5), we get
r=115r2(15Cr15Cr1)\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} \right)} =16(15(15+1)2)15(15(15+1)(30+1)6) = 16\left( {\dfrac{{15(15 + 1)}}{2}} \right) - 15\left( {\dfrac{{15(15 + 1)(30 + 1)}}{6}} \right)
== 19201240=6801920 - 1240 = 680
Hence we get its value as 680680

So, the correct answer is “Option A”.

Note: In the above question, after equation (5), we have used the formula n=1mn=m(m+1)2\sum\limits_{n = 1}^m n = \dfrac{{m(m + 1)}}{2} and
n=1mn2=m(m+1)(2m+1)6\sum\limits_{n = 1}^m {{n^2}} = \dfrac{{m(m + 1)(2m + 1)}}{6}. These formulae are very helpful have to remember and also combination formula i.e nCm=!n!m.!nm{}^n{C_m} = \dfrac{{\left| \\!{\underline {\, n \,}} \right. }}{{\left| \\!{\underline {\, m \,}} \right. .\left| \\!{\underline {\, {n - m} \,}} \right. }} where !n=1.2.3.4........n\left| \\!{\underline {\, n \,}} \right. = 1.2.3.4........n.