Question
Question: The value of \(\sum\limits_{r = 1}^{15} {{r^2}\left( {\dfrac{{{}^{15}{C_r}}}{{{}^{15}{C_{r - 1}}}}} ...
The value of r=1∑15r2(15Cr−115Cr) is equal to:
A. 680
B. 1085
C. 560
D. 1240
Solution
In this question, we are given r=1∑15r2(15Cr−115Cr) and we need to find its value.
We will use the formula:
nCm=∣!m.∣!n−m∣!n where ∣!n=1.2.3.4........n.Using these concepts we try to solve the question.
Complete step-by-step answer:
In this question, we need to find the value of r=1∑15r2(15Cr−115Cr) −−−−(1)
Here firstly we reduce r2(15Cr−115Cr)into a simpler form and then put summation sign.
We know that
nCm=∣!m.∣!n−m∣!n −−−−−(2)
Where ∣!n=1.2.3.4........n
Now using (2), we get
15Cr=∣!r.∣!15−r∣!15 −−−−−−(3)
And again using (2), we get
15Cr−1=!(r−1).!15−(r−1)∣!15
15Cr−1=!(r−1).∣!16−r∣!15 −−−−−(4)
Now substituting these values from (3) and (4) in (1),
r=1∑15r2(15Cr−115Cr) =r=1∑15r2 ∣!r−1.∣!16−r∣!15∣!r.∣!15−r∣!15
∣!n=1.2.3.4........n and hence we get,
=r=1∑15r2 (∣!15∣!r∣!15−r∣!15∣!r−1∣!16−r)
=r=1∑15r2 (r16−r)
=r=1∑15(16r−r2)
So now separating both the terms,
r=1∑15r2(15Cr−115Cr) =r=1∑1516r−r=1∑15r2 −−−−−(5)
Now we know that
n=1∑mn=2m(m+1) −−−−−(6)
n=1∑mn2=6m(m+1)(2m+1) −−−−−(7)
Using (6) and (7) in (5), we get
r=1∑15r2(15Cr−115Cr) =16(215(15+1))−15(615(15+1)(30+1))
= 1920−1240=680
Hence we get its value as 680
So, the correct answer is “Option A”.
Note: In the above question, after equation (5), we have used the formula n=1∑mn=2m(m+1) and
n=1∑mn2=6m(m+1)(2m+1). These formulae are very helpful have to remember and also combination formula i.e nCm=∣!m.∣!n−m∣!n where ∣!n=1.2.3.4........n.