Solveeit Logo

Question

Question: The value of \(\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}} \)(\(a\)≠\(0\), \(...

The value of n=1mloga2n1bm1\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}} (aa00, bb00,11) is equal to
A. mloga2mbm1m\log \dfrac{{{a^{2m}}}}{{{b^{m - 1}}}}
B. loga2mbm1\log \dfrac{{{a^{2m}}}}{{{b^{m - 1}}}}
C. m2loga2mb2m2\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}}
D. m2loga2mbm+1\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{m + 1}}}}

Explanation

Solution

Here the summation is taking over n=1n = 1 to mm. So there are mm terms. To get the solution students need to use the rules and properties of logarithms to get a required solution. The value of aa is not equal to 00 and b0b \ne 0. If b=0b = 0 then the denominator becomes zero and we cannot proceed any more also b1b \ne 1 is given.

Formula used: Power of power rule: (xm)n=amn{\left( {{x^m}} \right)^n} = {a^{mn}}
Logarithm power rule law: log(Mn)=nlog(M)\log \left( {{M^n}} \right) = n\log \left( M \right)

Complete step-by-step solution:
Let II=n=1mloga2n1bm1\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}}
Expand the summation from nn=11 to mm
II=logabm1\log \dfrac{a}{{{b^{m - 1}}}}+loga3bm1\log \dfrac{{{a^3}}}{{{b^{m - 1}}}}+loga5bm1\log \dfrac{{{a^5}}}{{{b^{m - 1}}}}+…+\log \dfrac{{{a^{2m - 1}}}}{{{b^{m - 1}}}}$$$ - - - - - \left( 1 \right)$ If the terms are the same then we can add the powers. The powers of $a$ in the numerators are $1,3,5,...,2m - 1$ and in the denominator there are $m$ terms. Now adding the powers of numerator and denominator in equation $\left( 1 \right)$ becomes $I$= \log \dfrac{{{a^{\left( {1 + 3 + 5 + ... + 2m - 1} \right)}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}}$$
Now, 11+33+55+…+2m2m11=m2{m^2}
For, Sm{S_m}=m2\dfrac{m}{2} (a+l)\left( {a + l} \right)
Where aa is the first term and ll is the last term.
Sm=m2(1+2m1){S_m} = \dfrac{m}{2}\left( {1 + 2m - 1} \right)
Simplifying we get,
Sm=m2(2m)\Rightarrow {S_m} = \dfrac{m}{2}\left( {2m} \right)
Cancelling the similar terms in numerator and denominator,
Sm=m2\Rightarrow {S_m} = {m^2}
Hence,
\therefore 1+3+5+...+2m1=m21 + 3 + 5 + ... + 2m - 1 = {m^2}
We get, II= logam2b(m1)m\log \dfrac{{{a^{{m^2}}}}}{{{b^{\left( {m - 1} \right)}}^m}}
I\Rightarrow I=loga2mb(m1)m(2)\log \dfrac{{{a^{2m}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}} - - - - - \left( 2 \right)
In equation (2)\left( 2 \right), we used the power of power rule in the numerator.
Power of power rule:
For any number xx and all integers mm and nn; (xm)n=amn{\left( {{x^m}} \right)^n} = {a^{mn}}
From equation (2)\left( 2 \right), I=log((a2m)m2(b(m1)2)m2)(3)I = \log \left( {\dfrac{{{{\left( {{a^{2m}}} \right)}^{\dfrac{m}{2}}}}}{{{{\left( {{b^{\left( {m - 1} \right)2}}} \right)}^{\dfrac{m}{2}}}}}} \right) - - - - - \left( 3 \right)
In equation (3)\left( 3 \right), just multiply and divide by 22 in the powers of numerator and denominator.
Now, I=log(a2m(b2m2))m2(4)I = \log {\left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)^{\dfrac{m}{2}}} - - - - - \left( 4 \right)
\Rightarrow I=m2loga2mb2m2(5)I = \dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}} - - - - - \left( 5 \right)
In equation (5)\left( 5 \right) we used power rule of logarithm that is, log(Mn)=nlog(M)\log \left( {{M^n}} \right) = n\log \left( M \right)
\therefore I=m2log(a2m(b2m2))I = \dfrac{m}{2}\log \left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)
 n=1mloga2n1bm1 = m2loga2mb2m2\therefore {\text{ }}\sum\limits_{n = 1}^m {\log \dfrac{{{a^{{2^{n - 1}}}}}}{{{b^{m - 1}}}}} {\text{ = }}\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}}

The answer is option (C)\left( C \right)

Note: The laws which we used in the problems are power of power rule, law of power in logarithm. Also there are some more logarithm laws: product rule law, quotient rule law, power rule law and change of base rule law. Also the important formula we used in the problem is 1+3+5+.....+2m1=m21 + 3 + 5 + ..... + 2m - 1 = {m^2}.