Question
Question: The value of \(\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }...
The value of n=1∑10(sin112nπ−icos112nπ) is
A. −1
B. 0
C. −i
D. i
Solution
First multiply and divide the expression by −i to remove the imaginary part from the cosine part. After that use the formula cosk2nπ+isink2nπ=eik2nπ. Now expand the summation, it will form a G.P. After that use the sum of the G.P. formula S=(1−r)a(1−rn) to find the sum of the terms. Then do the simplification to get the desired result.
Complete step-by-step solution:
The given expression is,
⇒n=1∑10(sin112nπ−icos112nπ)
Multiply and divide the expression by −i to remove the imaginary part from the cosine,
⇒n=1∑10(sin112nπ−icos112nπ)×ii
Multiply the numerator of the expression,
⇒i1n=1∑10(isin112nπ−i2cos112nπ)
As we know that i2=−1. Then the expression will be,
⇒i1n=1∑10(isin112nπ+cos112nπ)
We know that,
cosk2nπ+isink2nπ=eik2nπ
Also, we know that,
i4=1
Then the expression can be written as,
⇒ii4n=1∑10ei112nπ
Cancel out the common factors,
⇒i3n=1∑10ei112nπ
Factor i3 to i2×i,
⇒i2×in=1∑10ei112nπ
As we know that i2=−1. Then the expression will be,
⇒−in=1∑10ei112nπ
Expand the expression,
⇒−iei112π+ei114π+ei116π+ei118π+ei1110π+ei1112π+ei1114π+ei1116π+ei1118π+ei1120π+ei1122π
The above expression is in form of GP where a=ei112π and r=ei112π.
The formula of the sum of GP is given by,
(1−r)a(1−rn)
Substitute the values in the expression,
\Rightarrow - i\left\\{ {{e^{i\dfrac{{2\pi }}{{11}}}}\dfrac{{\left( {1 - {e^{i\dfrac{{20\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Multiply the terms inside the bracket,
\Rightarrow - i\left\\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - {e^{i\dfrac{{22\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
As we know that ei2π=1. Then,
\Rightarrow - i\left\\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - 1} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Take -1 common from the numerator,
\Rightarrow - i\left\\{ {\dfrac{{ - 1\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Cancel out the common factor,
⇒i
Thus, the value of n=1∑10(sin112nπ−icos112nπ) is i.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form x+iy, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as z=x+iy.
A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called the common ratio.