Solveeit Logo

Question

Question: The value of \(\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }...

The value of n=110(sin2nπ11icos2nπ11)\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} is
A. 1 - 1
B. 00
C. i - i
D. ii

Explanation

Solution

First multiply and divide the expression by i - i to remove the imaginary part from the cosine part. After that use the formula cos2nπk+isin2nπk=ei2nπk\cos \dfrac{{2n\pi }}{k} + i\sin \dfrac{{2n\pi }}{k} = {e^{i\dfrac{{2n\pi }}{k}}}. Now expand the summation, it will form a G.P. After that use the sum of the G.P. formula S=a(1rn)(1r)S = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}} to find the sum of the terms. Then do the simplification to get the desired result.

Complete step-by-step solution:
The given expression is,
n=110(sin2nπ11icos2nπ11)\Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)}
Multiply and divide the expression by i - i to remove the imaginary part from the cosine,
n=110(sin2nπ11icos2nπ11)×ii\Rightarrow \sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} \times \dfrac{i}{i}
Multiply the numerator of the expression,
1in=110(isin2nπ11i2cos2nπ11)\Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} - {i^2}\cos \dfrac{{2n\pi }}{{11}}} \right)}
As we know that i2=1{i^2} = - 1. Then the expression will be,
1in=110(isin2nπ11+cos2nπ11)\Rightarrow \dfrac{1}{i}\sum\limits_{n = 1}^{10} {\left( {i\sin \dfrac{{2n\pi }}{{11}} + \cos \dfrac{{2n\pi }}{{11}}} \right)}
We know that,
cos2nπk+isin2nπk=ei2nπk\cos \dfrac{{2n\pi }}{k} + i\sin \dfrac{{2n\pi }}{k} = {e^{i\dfrac{{2n\pi }}{k}}}
Also, we know that,
i4=1{i^4} = 1
Then the expression can be written as,
i4in=110(ei2nπ11)\Rightarrow \dfrac{{{i^4}}}{i}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)}
Cancel out the common factors,
i3n=110(ei2nπ11)\Rightarrow {i^3}\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)}
Factor i3{i^3} to i2×i{i^2} \times i,
i2×in=110(ei2nπ11)\Rightarrow {i^2} \times i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)}
As we know that i2=1{i^2} = - 1. Then the expression will be,
in=110(ei2nπ11)\Rightarrow - i\sum\limits_{n = 1}^{10} {\left( {{e^{i\dfrac{{2n\pi }}{{11}}}}} \right)}
Expand the expression,
i(ei2π11+ei4π11+ei6π11+ei8π11+ei10π11+ei12π11+ei14π11+ei16π11+ei18π11+ei20π11+ei22π11)\Rightarrow - i\left( {{e^{i\dfrac{{2\pi }}{{11}}}} + {e^{i\dfrac{{4\pi }}{{11}}}} + {e^{i\dfrac{{6\pi }}{{11}}}} + {e^{i\dfrac{{8\pi }}{{11}}}} + {e^{i\dfrac{{10\pi }}{{11}}}} + {e^{i\dfrac{{12\pi }}{{11}}}} + {e^{i\dfrac{{14\pi }}{{11}}}} + {e^{i\dfrac{{16\pi }}{{11}}}} + {e^{i\dfrac{{18\pi }}{{11}}}} + {e^{i\dfrac{{20\pi }}{{11}}}} + {e^{i\dfrac{{22\pi }}{{11}}}}} \right)
The above expression is in form of GP where a=ei2π11a = {e^{i\dfrac{{2\pi }}{{11}}}} and r=ei2π11r = {e^{i\dfrac{{2\pi }}{{11}}}}.
The formula of the sum of GP is given by,
a(1rn)(1r)\dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}
Substitute the values in the expression,
\Rightarrow - i\left\\{ {{e^{i\dfrac{{2\pi }}{{11}}}}\dfrac{{\left( {1 - {e^{i\dfrac{{20\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Multiply the terms inside the bracket,
\Rightarrow - i\left\\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - {e^{i\dfrac{{22\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
As we know that ei2π=1{e^{i2\pi }} = 1. Then,
\Rightarrow - i\left\\{ {\dfrac{{\left( {{e^{i\dfrac{{2\pi }}{{11}}}} - 1} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Take -1 common from the numerator,
\Rightarrow - i\left\\{ {\dfrac{{ - 1\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}{{\left( {1 - {e^{i\dfrac{{2\pi }}{{11}}}}} \right)}}} \right\\}
Cancel out the common factor,
i\Rightarrow i
Thus, the value of n=110(sin2nπ11icos2nπ11)\sum\limits_{n = 1}^{10} {\left( {\sin \dfrac{{2n\pi }}{{11}} - i\cos \dfrac{{2n\pi }}{{11}}} \right)} is ii.

Hence, the option (D) is the correct answer.

Note: The complex numbers are the field C of numbers of the form x+iyx + iy, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as z=x+iyz = x + iy.
A G.P is a sequence such that any element after the first is obtained by multiplying the preceding element by a constant called the common ratio.