Solveeit Logo

Question

Mathematics Question on Sequence and series

The value of n=0n2+4n!\sum\limits_{n=0}^{\infty }{\frac{{{n}^{2}}+4}{n\,!}} is equal to

A

6e6\,e

B

5e5\,e

C

4e4\,e

D

NoneoftheseNone \,of\, these

Answer

6e6\,e

Explanation

Solution

n=0n2+4n!\sum\limits_{n=0}^{\infty }{\frac{{{n}^{2}}+4}{n!}}
=n=0(n2n!+4n!)=\sum\limits_{n=0}^{\infty }{\left( \frac{{{n}^{2}}}{n!}+\frac{4}{n!} \right)}
=n=0(nn(n1)!+4n!)=\sum\limits_{n=0}^{\infty }{\left( \frac{n}{n(n-1)!}+\frac{4}{n!} \right)}
=n=0(n(n1)!+4n!)=\sum\limits_{n=0}^{\infty }{\left( \frac{n}{(n-1)!}+\frac{4}{n!} \right)}
=\sum\limits_{n=0}^{\infty }{\left\\{ \frac{(n-1)}{(n-1)}+\frac{1}{(n-1)!}+\frac{4}{n!} \right\\}}
=\sum\limits_{n=0}^{\infty }{\left\\{ \frac{1}{(n-2)!}+\frac{1}{(n-1)!}+\frac{4}{n!} \right\\}}
=n=21(n2)!+n=11(n1)!+4n=01n!=\sum\limits_{n=2}^{\infty }{\frac{1}{(n-2)!}+}\sum\limits_{n=1}^{\infty }{\frac{1}{(n-1)!}}+4\sum\limits_{n=0}^{\infty }{\frac{1}{n!}}
=\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}
+\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}+4\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}
=e+e+4e=6e=e+e+4e=6e

So, the correct answer is (A): 6 e6\ e