Question
Mathematics Question on Sequence and series
The value of n=0∑∞n!n2+4 is equal to
A
6e
B
5e
C
4e
D
Noneofthese
Answer
6e
Explanation
Solution
n=0∑∞n!n2+4
=n=0∑∞(n!n2+n!4)
=n=0∑∞(n(n−1)!n+n!4)
=n=0∑∞((n−1)!n+n!4)
=\sum\limits_{n=0}^{\infty }{\left\\{ \frac{(n-1)}{(n-1)}+\frac{1}{(n-1)!}+\frac{4}{n!} \right\\}}
=\sum\limits_{n=0}^{\infty }{\left\\{ \frac{1}{(n-2)!}+\frac{1}{(n-1)!}+\frac{4}{n!} \right\\}}
=n=2∑∞(n−2)!1+n=1∑∞(n−1)!1+4n=0∑∞n!1
=\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}
+\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}+4\left\\{ 1+\frac{1}{1!}+\frac{1}{2!}+....\infty \right\\}
=e+e+4e=6e
So, the correct answer is (A): 6 e