Question
Question: The value of \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \righ...
The value of 0 ≤ i ≤ j ≤ 10∑∑(10Cj)(jCj) is equal to
A. 310
B. 310−1
C. 210
D. 210−1
Solution
Hint: First expand the summation with all possible values then use the idea of identity that,
nC0+nC1+nC2+........+nCn = 2n then try to use the theorem of Binomial expression,
nC0x0+nC1x1+nC2x2+........+nCnxn to finally get the desired results.
Complete step by step answer:
In the question we have been asked to find 0 ≤ i ≤ j ≤ 10∑∑(10Cj)(jCj)
Now, as we know that the expression is,
0 ≤ i ≤ j ≤ 10∑∑(10Cj)(jCj)
So, we will break it and we can write it as,
^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...$$$${{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)
So, we can rewrite the above expression using formula,
nC0+nC1+nC2+........+nCn = 2n
So, 1C0+1C1= 21
2C0+2C1+2C2= 2
3C0+3C1+3C2+3C3= 23
4C0+4C1+4C2+4C3+4C4= 24
Just like this we can also represent,
10C0+10C1+..........10C10= 210
Hence, we can write expression as,
10C0⋅20+10C1⋅21+10C2⋅22+10C3⋅23+..........+10C10⋅210.
So, we can write it as,
(1+2)10 = 310
Or, (1+2)10 = 10C0⋅20+10C1⋅21+10C2⋅22+10C3⋅23+..........+10C10⋅210 .
Hence, the answer is (1+2)10 which is 310.
Hence, the correct option is ‘A’.
Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.