Solveeit Logo

Question

Question: The value of \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \righ...

The value of 0  i   j  10(10Cj)(jCj)\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}} is equal to
A. 310{{3}^{10}}
B. 3101{{3}^{10}}-1
C. 210{{2}^{10}}
D. 2101{{2}^{10}}-1

Explanation

Solution

Hint: First expand the summation with all possible values then use the idea of identity that,
nC0+nC1+nC2+........+nCn = 2n^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}} then try to use the theorem of Binomial expression,
nC0x0+nC1x1+nC2x2+........+nCnxn^{n}{{\text{C}}_{\text{0}}}{{x}^{0}}{{+}^{n}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{x}^{2}}+........{{+}^{n}}{{\text{C}}_{n}}{{x}^{n}} to finally get the desired results.

Complete step by step answer:

In the question we have been asked to find 0  i   j  10(10Cj)(jCj)\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}
Now, as we know that the expression is,
0  i   j  10(10Cj)(jCj)\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}
So, we will break it and we can write it as,
^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...$$$${{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)
So, we can rewrite the above expression using formula,
nC0+nC1+nC2+........+nCn = 2n^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}
So, 1C0+1C1= 21^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}}=\ {{2}^{1}}
2C0+2C1+2C2= 2^{2}{{\text{C}}_{\text{0}}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}}=\ 2
3C0+3C1+3C2+3C3= 23^{3}{{\text{C}}_{\text{0}}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}}=\ {{2}^{3}}
4C0+4C1+4C2+4C3+4C4= 24^{4}{{\text{C}}_{\text{0}}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}}=\ {{2}^{4}}
Just like this we can also represent,
10C0+10C1+..........10C10= 210^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}+{{..........}^{10}}{{\text{C}}_{10}}=\ {{2}^{10}}
Hence, we can write expression as,
10C020+10C121+10C222+10C323+..........+10C10210^{10}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}.
So, we can write it as,
(1+2)10 = 310{{\left( 1+2 \right)}^{10}}\ =\ {{3}^{10}}
Or, (1+2)10 = 10C020+10C121+10C222+10C323+..........+10C10210{{\left( 1+2 \right)}^{10}}\ ={{\ }^{10}}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}} .
Hence, the answer is (1+2)10{{\left( 1+2 \right)}^{10}} which is 310{{3}^{10}}.
Hence, the correct option is ‘A’.

Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.