Solveeit Logo

Question

Question: The value of $\sqrt{\pi \int_0^{2008} x|\sin \pi x|dx}$ is equal to...

The value of π02008xsinπxdx\sqrt{\pi \int_0^{2008} x|\sin \pi x|dx} is equal to

A

2008\sqrt{2008}

B

π2008\pi\sqrt{2008}

C

1004

D

2008

Answer

2008

Explanation

Solution

To find the value of π02008xsinπxdx\sqrt{\pi \int_0^{2008} x|\sin \pi x|dx}, we first need to evaluate the integral I=02008xsinπxdxI = \int_0^{2008} x|\sin \pi x|dx.

The function sinπx|\sin \pi x| is periodic with period 1. We can split the integral over the intervals [n,n+1][n, n+1] for n=0,1,,2007n = 0, 1, \dots, 2007. I=n=02007nn+1xsinπxdxI = \sum_{n=0}^{2007} \int_n^{n+1} x|\sin \pi x|dx.

Let's consider the integral over a single interval [n,n+1][n, n+1]. Let x=n+ux = n+u, so dx=dudx = du. When x=nx=n, u=0u=0. When x=n+1x=n+1, u=1u=1. nn+1xsinπxdx=01(n+u)sinπ(n+u)du\int_n^{n+1} x|\sin \pi x|dx = \int_0^1 (n+u)|\sin \pi (n+u)|du. We have sinπ(n+u)=sin(nπ+πu)=sin(nπ)cos(πu)+cos(nπ)sin(πu)=(1)nsin(πu)\sin \pi (n+u) = \sin(n\pi + \pi u) = \sin(n\pi)\cos(\pi u) + \cos(n\pi)\sin(\pi u) = (-1)^n \sin(\pi u). So, sinπ(n+u)=(1)nsin(πu)=sin(πu)|\sin \pi (n+u)| = |(-1)^n \sin(\pi u)| = |\sin(\pi u)|. For u[0,1]u \in [0, 1], πu[0,π]\pi u \in [0, \pi], so sin(πu)0\sin(\pi u) \ge 0. Thus, sin(πu)=sin(πu)|\sin(\pi u)| = \sin(\pi u). The integral becomes 01(n+u)sin(πu)du\int_0^1 (n+u)\sin(\pi u)du. We can split this into two integrals: 01nsin(πu)du+01usin(πu)du\int_0^1 n\sin(\pi u)du + \int_0^1 u\sin(\pi u)du.

First integral: n01sin(πu)du=n[cos(πu)π]01=n(cos(π)π(cos(0)π))=n(1π+1π)=n(1π+1π)=2nπn\int_0^1 \sin(\pi u)du = n \left[-\frac{\cos(\pi u)}{\pi}\right]_0^1 = n \left(-\frac{\cos(\pi)}{\pi} - (-\frac{\cos(0)}{\pi})\right) = n \left(-\frac{-1}{\pi} + \frac{1}{\pi}\right) = n \left(\frac{1}{\pi} + \frac{1}{\pi}\right) = \frac{2n}{\pi}.

Second integral: 01usin(πu)du\int_0^1 u\sin(\pi u)du. We use integration by parts: vdw=vwwdv\int v dw = vw - \int w dv. Let v=uv=u and dw=sin(πu)dudw=\sin(\pi u)du. Then dv=dudv=du and w=sin(πu)du=cos(πu)πw=\int \sin(\pi u)du = -\frac{\cos(\pi u)}{\pi}. 01usin(πu)du=[ucos(πu)π]0101(cos(πu)π)du\int_0^1 u\sin(\pi u)du = \left[-\frac{u\cos(\pi u)}{\pi}\right]_0^1 - \int_0^1 \left(-\frac{\cos(\pi u)}{\pi}\right)du =(1cos(π)π(0cos(0)π))+1π01cos(πu)du= \left(-\frac{1\cos(\pi)}{\pi} - (-\frac{0\cos(0)}{\pi})\right) + \frac{1}{\pi}\int_0^1 \cos(\pi u)du =1π+1π[sin(πu)π]01= \frac{1}{\pi} + \frac{1}{\pi}\left[\frac{\sin(\pi u)}{\pi}\right]_0^1 =1π+1π2(sin(π)sin(0))=1π+1π2(00)=1π= \frac{1}{\pi} + \frac{1}{\pi^2}(\sin(\pi) - \sin(0)) = \frac{1}{\pi} + \frac{1}{\pi^2}(0 - 0) = \frac{1}{\pi}.

So, nn+1xsinπxdx=2nπ+1π=2n+1π\int_n^{n+1} x|\sin \pi x|dx = \frac{2n}{\pi} + \frac{1}{\pi} = \frac{2n+1}{\pi}.

Now, we sum this expression from n=0n=0 to n=2007n=2007: I=n=020072n+1π=1πn=02007(2n+1)I = \sum_{n=0}^{2007} \frac{2n+1}{\pi} = \frac{1}{\pi} \sum_{n=0}^{2007} (2n+1). The sum n=02007(2n+1)=1+3+5++(2×2007+1)=1+3+5++4015\sum_{n=0}^{2007} (2n+1) = 1 + 3 + 5 + \dots + (2 \times 2007 + 1) = 1 + 3 + 5 + \dots + 4015. This is the sum of the first 2008 odd numbers. The sum of the first NN odd numbers is N2N^2. Here, N=2008N=2008. So the sum is 200822008^2.

So, I=1π×20082I = \frac{1}{\pi} \times 2008^2.

The question asks for the value of πI\sqrt{\pi I}. πI=π×(1π×20082)=20082\sqrt{\pi I} = \sqrt{\pi \times \left(\frac{1}{\pi} \times 2008^2\right)} = \sqrt{2008^2}. Since 2008 is a positive number, 20082=2008\sqrt{2008^2} = 2008.