Solveeit Logo

Question

Question: The value of $(\sqrt{5}+1)^5-(\sqrt{5}-1)^5$ is...

The value of (5+1)5(51)5(\sqrt{5}+1)^5-(\sqrt{5}-1)^5 is

Answer

352

Explanation

Solution

Let x=5x = \sqrt{5} and y=1y = 1. The expression is (x+y)5(xy)5(x+y)^5 - (x-y)^5.

Using the binomial theorem: (x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5 (xy)5=x55x4y+10x3y210x2y3+5xy4y5(x-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5

Subtracting the second from the first: (x+y)5(xy)5=2(5x4y+10x2y3+y5)(x+y)^5 - (x-y)^5 = 2(5x^4y + 10x^2y^3 + y^5) =10x4y+20x2y3+2y5= 10x^4y + 20x^2y^3 + 2y^5

Substitute x=5x = \sqrt{5} and y=1y = 1: =10(5)4(1)+20(5)2(1)3+2(1)5= 10(\sqrt{5})^4(1) + 20(\sqrt{5})^2(1)^3 + 2(1)^5 =10(25)(1)+20(5)(1)+2(1)= 10(25)(1) + 20(5)(1) + 2(1) =250+100+2= 250 + 100 + 2 =352= 352