Solveeit Logo

Question

Question: The value of \(\sqrt{2}\left( \cos\frac{\pi}{12} + i\sin\frac{\pi}{12} \right)\text{ },\sqrt{2}\lef...

The value of 2(cosπ12+isinπ12) ,2(sinπ12icosπ12) , 1+i\sqrt{2}\left( \cos\frac{\pi}{12} + i\sin\frac{\pi}{12} \right)\text{ },\sqrt{2}\left( - \sin\frac{\pi}{12} - i\cos\frac{\pi}{12} \right)\ ,\ 1 + i is.

A

I if n is even, – i if n is odd

B

1 if n is even, – 1 if n is odd

C

1 if n is odd, – 1 if n is even

D

I if n is even, – 1 if n is odd

Answer

1 if n is odd, – 1 if n is even

Explanation

Solution

Let a3+b3=16a^{3} + b^{3} = 16

Clearly series is A.P. with common difference = 2

x3+y3+z3=(a+b)3+(aω+bω2)3+(aω2+bω)3x^{3} + y^{3} + z^{3} = (a + b)^{3} + (a\omega + b\omega^{2})^{3} + (a\omega^{2} + b\omega)^{3}and =3a3+3b3+3(a2b+ab2)(1+ω2ω2+ωω4)= 3a^{3} + 3b^{3} + 3(a^{2}b + ab^{2})(1 + \omega^{2}\omega^{2} + \omega\omega^{4})

So, number of terms in A. P. =3a3+3b3+3(a2b+ab2)(1+ω+ω2)= 3a^{3} + 3b^{3} + 3(a^{2}b + ab^{2})(1 + \omega + \omega^{2})

Now, ==

3(a3+b3)3(a^{3} + b^{3}) i.e. x3+y3+z3=(4)3+(2)3+(2)3=48x^{3} + y^{3} + z^{3} = (4)^{3} + ( - 2)^{3} + ( - 2)^{3} = 48

Now put 3(a3+b3)=483(a^{3} + b^{3}) = 48

ω\omega, ω2\omega^{2},

=a+bω+cω2b+cω+aω2+a+bω+cω2c+aω+bω2= \frac{a + b\omega + c\omega^{2}}{b + c\omega + a\omega^{2}} + \frac{a + b\omega + c\omega^{2}}{c + a\omega + b\omega^{2}}, =ω(a+bω+cω2)(bω+cω2+a)+ω2(a+bω+cω2)(cω2+a+aω)=ω+ω2=1= \frac{\omega(a + b\omega + c\omega^{2})}{(b\omega + c\omega^{2} + a)} + \frac{\omega^{2}(a + b\omega + c\omega^{2})}{(c\omega^{2} + a + a\omega)} = \omega + \omega^{2} = - 1,

1,ω,ω21,\omega,\omega^{2}