Solveeit Logo

Question

Question: The value of \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ\] is equal to A 4 B 2 C 1 D -4...

The value of 3cosec20sec20\sqrt 3 \cos ec20^\circ - \sec 20^\circ is equal to
A 4
B 2
C 1
D -4

Explanation

Solution

First convert the given trigonometric expression in terms of sine and cosine. Next, take the L.C.M. of the denominators. Now, multiply and divide by 2 in both numerator and denominator of the obtained fraction. Use angle sum property of sine to obtain the value of the given expression.

Complete step-by-step answer:
The given trigonometric expression 3cosec20sec20\sqrt 3 \cos ec20^\circ - \sec 20^\circ is solved as shown below.

3cosec20sec20 3sin201cos20  \,\,\,\,\,\sqrt 3 \cos ec20^\circ - \sec 20^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{{\sin 20^\circ }} - \dfrac{1}{{\cos 20^\circ }} \\\

Now, take the L.C.M. of the denominator as shown below.
3cos20sin20sin20cos20\dfrac{{\sqrt 3 \cos 20^\circ - \sin 20^\circ }}{{\sin 20^\circ \cos 20^\circ }}
Multiply and divide by 2 on both the numerator and denominator of the above expression.

22×(3cos20sin20)22×(sin20cos20) 2(32cos2012sin20)12(2sin20cos20) 2(sin60cos20cos60sin20)12(sin40)(2sinAcosA=sin2A) 4sin(6020)(sin40)(sinAcosBcosAsinB=sin(AB))  \,\,\,\,\,\dfrac{{\dfrac{2}{2} \times \left( {\sqrt 3 \cos 20^\circ - \sin 20^\circ } \right)}}{{\dfrac{2}{2} \times \left( {\sin 20^\circ \cos 20^\circ } \right)}} \\\ \Rightarrow \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2} \cdot \cos 20^\circ - \dfrac{1}{2} \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {2\sin 20^\circ \cos 20^\circ } \right)}} \\\ \Rightarrow \dfrac{{2\left( {\sin 60^\circ \cdot \cos 20^\circ - \cos 60^\circ \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2\sin A\cos A = \sin 2A} \right) \\\ \Rightarrow \dfrac{{4\sin \left( {60^\circ - 20^\circ } \right)}}{{\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin A\cos B - \cos A\sin B = sin\left( {A - B} \right)} \right) \\\

Further, simplify the above trigonometric expression.

4sin40(sin40) 4  \,\,\,\,\,\,\,\dfrac{{4\sin 40^\circ }}{{\left( {\sin 40^\circ } \right)}} \\\ \Rightarrow 4 \\\

Thus, the value of the trigonometric expression 3cosec20sec20\sqrt 3 \cos ec20^\circ - \sec 20^\circ is 4.
Hence, option (A) is the correct answer.

Note: Try to remember all trigonometric formulas. Use the following trigonometric identities while solving the given problem.

sinAcosBcosAsinB=sin(AB) 2sinAcosA=sin2A  \sin A\cos B - \cos A\sin B = sin\left( {A - B} \right) \\\ 2\sin A\cos A = \sin 2A \\\