Solveeit Logo

Question

Question: The value of \(\sin\theta + \cos\theta\) will be greatest when...

The value of sinθ+cosθ\sin\theta + \cos\theta will be greatest when

A

θ=30o\theta = 30^{o}

B

θ=45o\theta = 45^{o}

C

θ=60o\theta = 60^{o}

D

θ=90o\theta = 90^{o}

Answer

θ=45o\theta = 45^{o}

Explanation

Solution

Let f(x)=sinθ+cosθ=2sin(θ+π4)1sin(θ+π4)1f(x) = \sin\theta + \cos\theta = \sqrt{2}\sin(\theta + \frac{\pi}{4}) - 1 \leq \sin(\theta + \frac{\pi}{4}) \leq 1

22sin(θ+π4)2- \sqrt{2} \leq \sqrt{2}\sin(\theta + \frac{\pi}{4}) \leq \sqrt{2}

If f(x)f(x) is maximum then,

sin(θ+π4)=1=sinπ2\sin(\theta + \frac{\pi}{4}) = 1 = \sin\frac{\pi}{2}θ=π4\theta = \frac{\pi}{4}θ+π4=π2θ=π4\theta + \frac{\pi}{4} = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{4}.