Solveeit Logo

Question

Question: The value of sin<sup>-1</sup> \(\left[ \cot \left( \sin ^ { - 1 } \sqrt { \left( \frac { 2 - \sqrt ...

The value of

sin-1 [cot(sin1(234)+cos1124+sec12)]\left[ \cot \left( \sin ^ { - 1 } \sqrt { \left( \frac { 2 - \sqrt { 3 } } { 4 } \right) } + \cos ^ { - 1 } \frac { \sqrt { 12 } } { 4 } + \sec ^ { - 1 } \sqrt { 2 } \right) \right] is

A

0

B

π/4

C

π/6

D

π/2

Answer

0

Explanation

Solution

We have sin-1

[cot(sin1(234)+cos1124+sec12)]\left[ \cot \left( \sin ^ { - 1 } \sqrt { \left( \frac { 2 - \sqrt { 3 } } { 4 } \right) } + \cos ^ { - 1 } \frac { \sqrt { 12 } } { 4 } + \sec ^ { - 1 } \sqrt { 2 } \right) \right]

= sin-1[cot(sin1(3122)+cos132+cos112)]\left[ \cot \left( \sin ^ { - 1 } \left( \frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } } \right) + \cos ^ { - 1 } \frac { \sqrt { 3 } } { 2 } + \cos ^ { - 1 } \frac { 1 } { \sqrt { 2 } } \right) \right]

= sin-1[cot(sin1(3122)+cos1(3122))]\left[ \cot \left( \sin ^ { - 1 } \left( \frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } } \right) + \cos ^ { - 1 } \left( \frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } } \right) \right) \right]

= sin-1[cot900] = sin-10 = 0