Solveeit Logo

Question

Question: The value of \(sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - ...

The value of sin[tan1[1x2]2x+cos1[1x2][1+x2]]sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] is
A. 11
B. 00
C. 1 - 1
D. π2\dfrac{\pi }{2}

Explanation

Solution

Generally, in Mathematics, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
Since from given we are asked to find the value of sin[tan1[1x2]2x+cos1[1x2][1+x2]]sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right].
We need to apply the trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) cot2θ=cot2θ12cotθcot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}
b)cos2θ=1tan2θ1+tan2θ  cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;
c) tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}
d) cotθ=tan(π2θ)\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)
e) cos1cosθ=θ{\cos ^{ - 1}}\cos \theta = \theta
f)tan1tanθ=θ{\tan ^{ - 1}}\tan \theta = \theta

Complete step by step answer:
Since from the given that, we are asked to calculate the expression on the trigonometric functions sin[tan1[1x2]2x+cos1[1x2][1+x2]]sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]
Let us put x=tanθx = \tan \theta in the given expression.
Thus, we get
sin[tan1[1x2]2x+cos1[1x2][1+x2]]=sin[tan1[1tan2θ]2tanθ+cos1[1tan2θ][1+tan2θ]]sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{2\tan \theta }} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]
Now, we shall applytanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }} in the above equation.
sin[tan1[1x2]2x+cos1[1x2][1+x2]]=sin[tan1[11cot2θ]21cotθ+cos1[1tan2θ][1+tan2θ]]\Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - \dfrac{1}{{{{\cot }^2}\theta }}} \right]}}{{2\dfrac{1}{{\cot \theta }}}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]
=sin[tan1[cot2θ1cot2θ]×cotθ2+cos1[1tan2θ][1+tan2θ]]= sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{{{\cot }^2}\theta }}} \right] \times \dfrac{{\cot \theta }}{2} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]
=sin[tan1[cot2θ12cotθ]+cos1[1tan2θ][1+tan2θ]]= sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{2\cot \theta }}} \right] + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]
Now, we need to apply the formulaecot2θ=cot2θ12cotθcot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}and cos2θ=1tan2θ1+tan2θ  cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;in the above equation.
sin[tan1[1x2]2x+cos1[1x2][1+x2]]=sin[tan1cot2θ+cos1cos2θ]\Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\cot 2\theta + {{\cos }^{ - 1}}\cos 2\theta } \right]
=sin[tan1tan(π22θ)+cos1cos2θ]= sin\left[ {{{\tan }^{ - 1}}\tan \left( {\dfrac{\pi }{2} - 2\theta } \right) + {{\cos }^{ - 1}}\cos 2\theta } \right] (Here we applied the formulacotθ=tan(π2θ)\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right) )
Now, we need to apply the formulascos1cosθ=θ{\cos ^{ - 1}}\cos \theta = \theta andtan1tanθ=θ{\tan ^{ - 1}}\tan \theta = \theta in the above equation.
Thus, we get
sin[tan1[1x2]2x+cos1[1x2][1+x2]]=sin[π22θ+2θ]\Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {\dfrac{\pi }{2} - 2\theta + 2\theta } \right]
=sinπ2= \sin \dfrac{\pi }{2}
=1= 1
Hence, sin[tan1[1x2]2x+cos1[1x2][1+x2]]=1sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1

So, the correct answer is “Option A”.

Note:
If we are asked to calculate the value of a trigonometric expression, we need to first analyze the given problem where we are able to apply the trigonometric identities.
Here, some trigonometric identities/formulae that we applied are needed to know to obtain the desired answer. Hence, we got sin[tan1[1x2]2x+cos1[1x2][1+x2]]=1sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1.