Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of sin[nπ+(1)nπ4],nI\sin \left[ n \pi + (-1)^n \frac{\pi}{4} \right], n \in I is

A

0

B

12\frac{1}{\sqrt{2}}

C

12 - \frac{1}{\sqrt{2}}

D

None of these

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

sin[nπ+(1)nπ4]=(1)nsin[(1)nπ4]\sin\left[n \pi+\left(-1\right)^{n} \frac{\pi}{4}\right] = \left(-1\right)^{n} \sin\left[\left(-1\right)^{n} \frac{\pi}{4}\right] [sin(nπ+θ)=(1)nsinθ]\left[\because \sin\left(n\pi+\theta\right) = \left(-1\right)^{n} \sin\theta\right] =(1)n(1)nsinπ4= \left(-1\right)^{n} \left(-1\right)^{n} \sin\frac{\pi}{4} sin[(1)nθ=(1)nsinθ]\therefore \sin\left[\left(-1\right)^{n}\theta = - \left(-1\right)^{n} \sin\theta\right] =(1)2nsinπ4=sinπ4=12= \left(-1\right)^{2n} \sin \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2} }