Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of sin[cot1cos(tan1x)]\sin \left[\cot^{-1}\\{{\cos(tan^{-1}\,x)\\}}\right] is

A

(1+x22+x2)\left(\sqrt{\frac{1+x^2}{2+x^2}}\right)

B

(2+x21+x2)\left(\sqrt{\frac{2+x^2}{1+x^2}}\right)

C

(x22x2+1)\left(\sqrt{\frac{x^2-2}{x^2+1}}\right)

D

(x21x22)\left(\sqrt{\frac{x^2-1}{x^2-2}}\right)

Answer

(1+x22+x2)\left(\sqrt{\frac{1+x^2}{2+x^2}}\right)

Explanation

Solution

cos(tan1x)=cosθcos\left(tan^{-1}x\right) = cos\,\theta if x=tanθ=11+x2x = tan \,\theta = \frac{1}{\sqrt{1+x^{2}}}

cot1[cos(tan1x)]=cot1[11+x2]=ϕcot^{-1} \left[ cos\left(tan^{-1}x\right)\right] = cot^{-1}\left[\frac{1}{\sqrt{1+x^{2}}}\right] = \phi
cotϕ=11+x2\Rightarrow cot\,\phi = \frac{1}{\sqrt{1+x^{2}}}

sin[cot1(cos(tan1x))]=sinϕ\therefore sin\left[cot^{-1} \left(cos\left(tan^{-1} x\right)\right)\right] = sin\, \phi
=1+x22+x2= \frac{\sqrt{1+x^{2}}}{\sqrt{2+x^{2}}}
=1+x22+x2= \sqrt{\frac{1+x^{2}}{2+x^{2}}}