Question
Mathematics Question on Properties of Inverse Trigonometric Functions
The value of sin[cot−1cos(tan−1x)] is
A
(2+x21+x2)
B
(1+x22+x2)
C
(x2+1x2−2)
D
(x2−2x2−1)
Answer
(2+x21+x2)
Explanation
Solution
cos(tan−1x)=cosθ if x=tanθ=1+x21
cot−1[cos(tan−1x)]=cot−1[1+x21]=ϕ
⇒cotϕ=1+x21
∴sin[cot−1(cos(tan−1x))]=sinϕ
=2+x21+x2
=2+x21+x2