Solveeit Logo

Question

Question: The value of \(\sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\...

The value of sin(90θ).cosθ+sinθ.cos(90θ)\sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right) is:
A) 0
B) 1
C) 2
D) None of these

Explanation

Solution

We can use trigonometric identities to expand the difference of angles on both the terms. Then we can substitute the values of the trigonometric ratios at constant angles. Then we can simplify the terms and apply suitable identity to obtain the required solution.

Complete step by step solution:
We need to find the value of the expression sin(90θ).cosθ+sinθ.cos(90θ)\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)
Let I=sin(90θ).cosθ+sinθ.cos(90θ)I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)
Let I1=sin(90θ).cosθ{I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\, and I2=sinθ.cos(90θ){I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right) …. (1)
Now consider the 1st term,
I1=sin(90θ).cosθ\Rightarrow {I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\,
We know that sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B . On using this identity, we get
I1=(sin90cosθcos90sinθ).cosθ\Rightarrow {I_1} = \left( {\sin 90^\circ \cos \theta - \cos 90^\circ \sin \theta } \right).\cos \theta \,\,
We know that sin90=1\sin 90^\circ = 1 and cos90=0\cos 90^\circ = 0 on substituting these values, we get,
I1=(1×cosθ0×sinθ).cosθ\Rightarrow {I_1} = \left( {1 \times \cos \theta - 0 \times \sin \theta } \right).\cos \theta \,\,
On simplification, we get
I1=(cosθ).cosθ\Rightarrow {I_1} = \left( {\cos \theta } \right).\cos \theta \,\,
So, we have
I1=cos2θ\Rightarrow {I_1} = {\cos ^2}\theta \,\, …. (2)
Now we can consider the 2nd term.
I2=sinθ.cos(90θ)\Rightarrow {I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right)
We know that cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B . On using this identity, we get
I2=sinθ.(cos90cosθ+sin90sinθ)\Rightarrow {I_2} = \sin \theta .\left( {\cos 90^\circ \cos \theta + \sin 90^\circ \sin \theta } \right)
We know that sin90=1\sin 90^\circ = 1 and cos90=0\cos 90^\circ = 0 on substituting these values, we get
I2=sinθ.(0×cosθ+1×sinθ)\Rightarrow {I_2} = \sin \theta .\left( {0 \times \cos \theta + 1 \times \sin \theta } \right)
On further simplification, we get
I2=sinθ.(0+sinθ)\Rightarrow {I_2} = \sin \theta .\left( {0 + \sin \theta } \right)
So, we get
I2=sin2θ\Rightarrow {I_2} = {\sin ^2}\theta …. (3)
Now we can substitute these in the expression we need to find the value. Then, we get
I=sin(90θ).cosθ+sinθ.cos(90θ)\Rightarrow I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)
On substituting equation (1), we will obtain
I=I1+I2\Rightarrow I = {I_1} + {I_2}
Now we can substitute equations (2) and (3). So, we get
I=cos2θ+sin2θ\Rightarrow I = {\cos ^2}\theta + {\sin ^2}\theta
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 . On applying this identity, we get
I=1\Rightarrow I = 1
Therefore, the required value of the given expression is 1.

So, the correct answer is option B.

Note:
Alternate method to solve this problem is given by,
We need to find the value of the expression sin(90θ).cosθ+sinθ.cos(90θ)\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)
Let I=sin(90θ).cosθ+sinθ.cos(90θ)I = \sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)
We know that sin(90θ)=cosθ\sin \left( {90 - \theta } \right) = \cos \theta and cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta . On substituting these equations, our expression will become
I=cosθ×cosθ+sinθ×sinθI = \cos \theta \times \cos \theta + \sin \theta \times \sin \theta
We can write them as squares. So, we will get
I=cos2θ+sin2θI = {\cos ^2}\theta + {\sin ^2}\theta
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 . On applying this identity, we get
I=1\Rightarrow I = 1
Therefore, the required value of the given expression is 1.