Solveeit Logo

Question

Question: The value of \(\sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right)\)...

The value of sin(60+θ)cos(30θ)\sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right) is equal to
A.2cosθ2\cos \theta
B.2sinθ2\sin \theta
C.0
D.1

Explanation

Solution

Hint- In this particular type of question we need to use the trigonometric formula for sin(a+b) and cos(a-b). To further solve it we need to expand and simplify to get the desired answer.

Complete step-by-step answer:
Since
sin(a+b)=sina.cosb+cosa.sinb and cos(ab)=cosa.cosb+sina.sinb  \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b \\\ and{\text{ cos}}\left( {a - b} \right) = \cos a.\cos b + \sin a.\sin b \\\

sin(60+θ)cos(30θ) =sin60.cosθ+cos60.sinθ(cos30.cosθ+sin30.sinθ) =32.cosθ+12.sinθ32.cosθ12sinθ =0  \sin \left( {60^\circ + \theta } \right) - \cos \left( {30^\circ - \theta } \right) \\\ = \sin 60^\circ .\cos \theta + \cos 60^\circ .sin\theta - \left( {\cos 30^\circ .\cos \theta + \sin 30^\circ .\sin \theta } \right) \\\ = \dfrac{{\sqrt 3 }}{2}.\cos \theta + \dfrac{1}{2}.\sin \theta - \dfrac{{\sqrt 3 }}{2}.\cos \theta - \dfrac{1}{2}\sin \theta \\\ = 0 \\\

Note-
Remember to recall the basic trigonometric formulas while solving such types of questions. Note that this question could also be solved by directly converting sin(60+θ)\sin \left( {60^\circ + \theta } \right) into sin(90(30θ))\sin \left( {90^\circ - \left( {30^\circ - \theta } \right)} \right) and further into cos(30θ)\cos \left( {30^\circ - \theta } \right) , thus cancelling out both the terms to get 0.