Solveeit Logo

Question

Question: The value of \(\sin i = \) \( \left( a \right)\dfrac{{{e^2} - 1}}{2} \\\ \left( b \right)...

The value of sini=\sin i =
(a)e212 (b)e212e (c)i(e212e) (d)i(e212)  \left( a \right)\dfrac{{{e^2} - 1}}{2} \\\ \left( b \right)\dfrac{{{e^2} - 1}}{{2e}} \\\ \left( c \right)i\left( {\dfrac{{{e^2} - 1}}{{2e}}} \right) \\\ \left( d \right)i\left( {\dfrac{{{e^2} - 1}}{2}} \right) \\\

Explanation

Solution

Hint-In this question, we use the concept of Euler's form. Euler is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's form, eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .

Complete step-by-step solution -
Now, we use Euler's form to find the value of sini\sin i.
Euler's form, eiθ=cosθ+isinθ...........(1){e^{i\theta }} = \cos \theta + i\sin \theta ...........\left( 1 \right)
Now, we substitute θ in place of θ- \theta {\text{ in place of }}\theta in (1) equation.
ei(θ)=cos(θ)+isin(θ){e^{i\left( { - \theta } \right)}} = \cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right)
We know according to trigonometric function, cos(θ)=cosθ and sin(θ)=sinθ\cos \left( { - \theta } \right) = \cos \theta {\text{ and }}\sin \left( { - \theta } \right) = - \sin \theta
eiθ=cosθisinθ...........(2){e^{ - i\theta }} = \cos \theta - i\sin \theta ...........\left( 2 \right)
Now, subtract (2) equation from (1) equation.
eiθeiθ=(cosθ+isinθ)(cosθisinθ) eiθeiθ=2isinθ isinθ=eiθeiθ2  {e^{i\theta }} - {e^{ - i\theta }} = \left( {\cos \theta + i\sin \theta } \right) - \left( {\cos \theta - i\sin \theta } \right) \\\ \Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta \\\ \Rightarrow i\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2} \\\
Now, Multiply by ii on both sides of the equation.
i2sinθ=i(eiθeiθ2)\Rightarrow {i^2}\sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right)
As we know, i2=1{i^2} = - 1

sinθ=i(eiθeiθ2) sinθ=i(eiθeiθ2) sinθ=i(1eiθeiθ2) sinθ=i(1ei2θ2eiθ)  \Rightarrow - \sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right) \\\ \Rightarrow \sin \theta = i\left( {\dfrac{{{e^{ - i\theta }} - {e^{i\theta }}}}{2}} \right) \\\ \Rightarrow \sin \theta = i\left( {\dfrac{{\dfrac{1}{{{e^{i\theta }}}} - {e^{i\theta }}}}{2}} \right) \\\ \Rightarrow \sin \theta = i\left( {\dfrac{{1 - {e^{i2\theta }}}}{{2{e^{i\theta }}}}} \right) \\\

Now, we have to find sini\sin i so put the value of θ=i\theta = i .
sini=i(1e2i22ei2)\Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{2{i^2}}}}}{{2{e^{{i^2}}}}}} \right)
As we know, i2=1{i^2} = - 1

sini=i(1e22e1) sini=i(11e22e) sini=i(e212e)  \Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{ - 2}}}}{{2{e^{ - 1}}}}} \right) \\\ \Rightarrow \sin i = i\left( {\dfrac{{1 - \dfrac{1}{{{e^2}}}}}{{\dfrac{2}{e}}}} \right) \\\ \Rightarrow \sin i = i\left( {\dfrac{{{e^2} - 1}}{{2e}}} \right) \\\

So, the correct option is (c).

Note-In such types of problems we use some important points to solve questions in an easy way. Like first we use the value of Euler’s form eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta and find the value of its conjugate eiθ=cosθisinθ{e^{ - i\theta }} = \cos \theta - i\sin \theta then if we find the value of sini\sin i so we subtract both equations and put the value of θ=i\theta = i .