Solveeit Logo

Question

Question: The value of \({\sin h}^{- 1}\left( \frac{x}{\sqrt{1 - x^{2}}} \right)\) is...

The value of sinh1(x1x2){\sin h}^{- 1}\left( \frac{x}{\sqrt{1 - x^{2}}} \right) is

A

tanh1x\tanh^{- 1}x

B

coth1x\coth^{- 1}x

C

sinh1(2x)\sinh^{- 1}(2x)

D

cosh1(2x){\cos h}^{- 1}(2x)

Answer

tanh1x\tanh^{- 1}x

Explanation

Solution

Let x=tanhyx = \tanh y, then x1x2=tanhysechy=sinhy\frac{x}{\sqrt{1 - x^{2}}} = \frac{{\tan h}y}{\sec hy} = {\sin h}y

\therefore sinh1(x1x2)=sinh1(sinhy)\sinh^{- 1}\left( \frac{x}{\sqrt{1 - x^{2}}} \right) = \sinh^{- 1}(\sinh y)y=tanh1(x)y = {\tan h}^{- 1}(x)