Question
Question: The value of $\sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$ is equal to...
The value of sin149πsin1411πsin1413π is equal to

A
1/8
B
-1/8
C
1/4
D
-1/4
Answer
1/8
Explanation
Solution
Let the given expression be E. E=sin149πsin1411πsin1413π Using sin(π−x)=sinx: E=sin(π−145π)sin(π−143π)sin(π−14π) E=sin145πsin143πsin14π Using sinx=cos(2π−x): E=cos(2π−145π)cos(2π−143π)cos(2π−14π) E=cos142πcos144πcos146π E=cos7πcos72πcos73π Multiply and divide by 2sin7π: E=2sin7π2sin7πcos7πcos72πcos73π E=2sin7πsin72πcos72πcos73π Multiply by 2/2: E=4sin7π2sin72πcos72πcos73π=4sin7πsin74πcos73π Using sin74π=sin(π−73π)=sin73π: E=4sin7πsin73πcos73π Multiply by 2/2: E=8sin7π2sin73πcos73π=8sin7πsin76π Using sin76π=sin(π−7π)=sin7π: E=8sin7πsin7π=81
