Solveeit Logo

Question

Question: The value of $\sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$ is equal to...

The value of sin9π14sin11π14sin13π14\sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14} is equal to

A

1/8

B

-1/8

C

1/4

D

-1/4

Answer

1/8

Explanation

Solution

Let the given expression be EE. E=sin9π14sin11π14sin13π14E = \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14} Using sin(πx)=sinx\sin(\pi - x) = \sin x: E=sin(π5π14)sin(π3π14)sin(ππ14)E = \sin \left(\pi - \frac{5\pi}{14}\right) \sin \left(\pi - \frac{3\pi}{14}\right) \sin \left(\pi - \frac{\pi}{14}\right) E=sin5π14sin3π14sinπ14E = \sin \frac{5\pi}{14} \sin \frac{3\pi}{14} \sin \frac{\pi}{14} Using sinx=cos(π2x)\sin x = \cos\left(\frac{\pi}{2} - x\right): E=cos(π25π14)cos(π23π14)cos(π2π14)E = \cos\left(\frac{\pi}{2} - \frac{5\pi}{14}\right) \cos\left(\frac{\pi}{2} - \frac{3\pi}{14}\right) \cos\left(\frac{\pi}{2} - \frac{\pi}{14}\right) E=cos2π14cos4π14cos6π14E = \cos \frac{2\pi}{14} \cos \frac{4\pi}{14} \cos \frac{6\pi}{14} E=cosπ7cos2π7cos3π7E = \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7} Multiply and divide by 2sinπ72 \sin \frac{\pi}{7}: E=2sinπ7cosπ7cos2π7cos3π72sinπ7E = \frac{2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}}{2 \sin \frac{\pi}{7}} E=sin2π7cos2π7cos3π72sinπ7E = \frac{\sin \frac{2\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}}{2 \sin \frac{\pi}{7}} Multiply by 2/2: E=2sin2π7cos2π7cos3π74sinπ7=sin4π7cos3π74sinπ7E = \frac{2 \sin \frac{2\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}}{4 \sin \frac{\pi}{7}} = \frac{\sin \frac{4\pi}{7} \cos \frac{3\pi}{7}}{4 \sin \frac{\pi}{7}} Using sin4π7=sin(π3π7)=sin3π7\sin \frac{4\pi}{7} = \sin (\pi - \frac{3\pi}{7}) = \sin \frac{3\pi}{7}: E=sin3π7cos3π74sinπ7E = \frac{\sin \frac{3\pi}{7} \cos \frac{3\pi}{7}}{4 \sin \frac{\pi}{7}} Multiply by 2/2: E=2sin3π7cos3π78sinπ7=sin6π78sinπ7E = \frac{2 \sin \frac{3\pi}{7} \cos \frac{3\pi}{7}}{8 \sin \frac{\pi}{7}} = \frac{\sin \frac{6\pi}{7}}{8 \sin \frac{\pi}{7}} Using sin6π7=sin(ππ7)=sinπ7\sin \frac{6\pi}{7} = \sin (\pi - \frac{\pi}{7}) = \sin \frac{\pi}{7}: E=sinπ78sinπ7=18E = \frac{\sin \frac{\pi}{7}}{8 \sin \frac{\pi}{7}} = \frac{1}{8}