Question
Mathematics Question on Trigonometric Functions
The value of sin10πsin1013π is
A
21
B
−21
C
−41
D
1
Answer
−41
Explanation
Solution
sin10πsin1013π=sin10πsin(π+103π) =−sin10πsin103π =−21[2sin10πsin103π] =−21[cos(10π−103π)−cos(10π+103π)] =−21[cos(−102π)−cos(104π)] =−21[cos5π−cos52π] =−21[cos36∘−cos72∘] =−21[45+1−45−1] =−21[42]=−41