Question
Mathematics Question on Trigonometric Functions
The value of sin125πsin12π is
0
21
1
41
41
Solution
We can use the trigonometric identity sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
sin(125π)sin(12π)=sin(4π+6π)sin(12π)
Using the identity, we have:
sin(4π+6π)sin(12π)=(sin(4π)cos(6π)+cos(4π)sin(6π))sin(12π)
Simplifying further:
(sin(4π)cos(6π)+cos(4π)sin(6π))sin(12π)=(21⋅23+21⋅21)sin(12π)
Combining terms:
(21⋅23+21⋅21)sin(12π)=(23+1)⋅sin(12π)
Now, sin(12π) can be simplified using the half-angle formula:
sin(12π)=21−cos(6π)=21−23
Substituting back into the expression:
(23+1)sin(12π)=(23+1)21−23
Simplifying the expression:
(23+1)21−23=(23+1)42−3=(23+1)(22−3)
Multiplying the fractions:
(23+1)(22−3)=46−3+2−1
Therefore, the value of sin(125π)sin(12π)=46−3+2−1
Hence, the correct option is (D) 41.