Solveeit Logo

Question

Question: The value of \(\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{t...

The value of sinπn+sin3πn+sin5πn+.............to n terms\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{to n terms} is equal to
(A) 11
(B) 00
(C) n2\dfrac{n}{2}
(D) None of these

Explanation

Solution

For answering this question we will use the formulae sin(x)+sin(x+y)+sin(x+2y)+.............+sin(x+(N1)y)=sin(Ny2)sin(y2)sin(x+N12y)\sin \left( x \right)+\sin \left( x+y \right)+\sin \left( x+2y \right)+.............+\sin \left( x+\left( N-1 \right)y \right)=\dfrac{\sin \left( \dfrac{Ny}{2} \right)}{\sin \left( \dfrac{y}{2} \right)}\sin \left( x+\dfrac{N-1}{2}y \right)
which we have learnt from the basic concept and simplify the given expression sinπn+sin3πn+sin5πn+.............to n terms\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{to n terms} and find its value.

Complete step-by-step solution
Now considering from the question we have the expression sinπn+sin3πn+sin5πn+.............to n terms\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{to n terms} .
We will use the formulae learnt from the basic concept stated as sin(x)+sin(x+y)+sin(x+2y)+.............+sin(x+(N1)y)=sin(Ny2)sin(y2)sin(x+N12y)\sin \left( x \right)+\sin \left( x+y \right)+\sin \left( x+2y \right)+.............+\sin \left( x+\left( N-1 \right)y \right)=\dfrac{\sin \left( \dfrac{Ny}{2} \right)}{\sin \left( \dfrac{y}{2} \right)}\sin \left( x+\dfrac{N-1}{2}y \right) .
By comparing the formulae and expressions we will derive the values of x,y and Nx,y\text{ }and\text{ N} .
We have the first term as sinπn\sin \dfrac{\pi }{n} in the given expression which has to be compared with the first term in the formulae which is sin(x)\sin \left( x \right) which implies x=πnx=\dfrac{\pi }{n} .
We have the second term as sin3πn\sin \dfrac{3\pi }{n} in the given expression which has to be compared with the second term in the formulae which is sin(x+y)\sin \left( x+y \right)by using the value of xx in it. We will get the value of yy as y=2πny=\dfrac{2\pi }{n} .
We have the last term as sin(2n+1)πn\sin \dfrac{\left( 2n+1 \right)\pi }{n} in the given expression which has to be compared with the last term in the formulae which is sin(x+(N1)y)\sin \left( x+\left( N-1 \right)y \right) by using the value of xx and yy in it. We will get the value of NN as N=n+1N=n+1 .
Therefore we have x=πnx=\dfrac{\pi }{n} ,y=2πny=\dfrac{2\pi }{n} and N=n+1N=n+1 .
By using these values we will have sinπn+sin3πn+sin5πn+.............to n terms=sin((n+1)2πn2)sin((2πn)2)sin(πn+n2(2πn))\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{to n terms}=\dfrac{\sin \left( \dfrac{\left( n+1 \right)\dfrac{2\pi }{n}}{2} \right)}{\sin \left( \dfrac{\left( \dfrac{2\pi }{n} \right)}{2} \right)}\sin \left( \dfrac{\pi }{n}+\dfrac{n}{2}\left( \dfrac{2\pi }{n} \right) \right)
By simplifying this we will have
sin((n+1)πn)sin(πn)sin(πn+π)\Rightarrow \dfrac{\sin \left( \left( n+1 \right)\dfrac{\pi }{n} \right)}{\sin \left( \dfrac{\pi }{n} \right)}\sin \left( \dfrac{\pi }{n}+\pi \right)
Since we know that sin(π+x)=sinx\sin \left( \pi +x \right)=-\sin x we will have
sin((n+1)πn)sin(πn)sin(πn+π)\Rightarrow \dfrac{\sin \left( \left( n+1 \right)\dfrac{\pi }{n} \right)}{\sin \left( \dfrac{\pi }{n} \right)}\sin \left( \dfrac{\pi }{n}+\pi \right)
sin((n+1)πn)sin(πn)(sin(πn))\Rightarrow \dfrac{\sin \left( \left( n+1 \right)\dfrac{\pi }{n} \right)}{\sin \left( \dfrac{\pi }{n} \right)}\left( -\sin \left( \dfrac{\pi }{n} \right) \right)
sin((n+1)πn)\Rightarrow - \sin \left( \left( n+1 \right)\dfrac{\pi }{n} \right)
By further simplifying this by using sinπn=0\sin \pi n=0 for any value of nn we will have
sin((n+1)πn)\Rightarrow - \sin \left( \left( n+1 \right)\dfrac{\pi }{n} \right)
sin((1+1n)π)\Rightarrow - \sin \left( \left( 1+\dfrac{1}{n} \right)\pi \right)
0\Rightarrow 0
Therefore we can conclude that sinπn+sin3πn+sin5πn+.............to n terms=0\sin \dfrac{\pi }{n}+\sin \dfrac{3\pi }{n}+\sin \dfrac{5\pi }{n}+.............\text{to n terms}=0 .
Hence option B is correct.

Note: While answering questions of this type we should be aware of the simply trigonometric conversions like sin(π+x)=sinx\sin \left( \pi +x \right)=-\sin x, sin(πx)=sinx\sin \left( \pi -x \right)=\sin x , sin(2π+x)=sinx\sin \left( 2\pi +x \right)=\sin x and sin(2πx)=sinx\sin \left( 2\pi -x \right)=-\sin x similarly we have formulae for all other trigonometric formulae which can be found in different books or websites. We can make mistakes while using these formulae like in this case we had forgotten to put negative signs. It will not make any difference in this question but it will make a lot of differences in other questions of this type.