Solveeit Logo

Question

Question: The value of \(\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\) is: a). \(\dfra...

The value of sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14} is:
a). 116\dfrac{1}{16}
b). 18\dfrac{1}{8}
c). 12\dfrac{1}{2}
d). 11

Explanation

Solution

The above question is of trigonometry. In this question we have to find the value of sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14} but since we do not know the value of any of them so we will use trigonometric properties to solve the above question. We will first convert then into cosine function by using the property cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta and then we will multiply numerator and denominator both with sinπ7\sin \dfrac{\pi }{7} and then by using the property sin2A=2sinAcosA\sin 2A=2\sin A\cos A we will simplify it to get the required option.

Complete step by step answer:
We can see that the above question is of trigonometry in which we have to find the value of sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14} but since we do not know the value of any of then so we will use the trigonometric properties to simplify and solve it.
We will first convert all the sine in sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14} into cosine.
Since, we know that cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta so, we can say that:
cos(π2π14)=sinπ14\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{14} \right)=\sin \dfrac{\pi }{14}
So, sinπ14=cos3π7\sin \dfrac{\pi }{14}=\cos \dfrac{3\pi }{7}
Similarly, we can say that cos(π23π14)=sin3π14\cos \left( \dfrac{\pi }{2}-\dfrac{3\pi }{14} \right)=\sin \dfrac{3\pi }{14}
sin3π14=cos(2π7)\Rightarrow \sin \dfrac{3\pi }{14}=\cos \left( \dfrac{2\pi }{7} \right)
Similarly, sin5π14=cos(π25π14)=cos(π14)\Rightarrow \sin \dfrac{5\pi }{14}=\cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{14} \right)=\cos \left( \dfrac{\pi }{14} \right)
So, we can write sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14} as cos(3π7)cos(2π7)cos(π7)\cos \left( \dfrac{3\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{\pi }{7} \right)
Now, we will multiply numerator and denominator with sinπ7\sin \dfrac{\pi }{7} we will get:
=cos(3π7)cos(2π7)cos(π7)sin(π7)sin(π7)............(1)=\dfrac{\cos \left( \dfrac{3\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{\pi }{7} \right)\sin \left( \dfrac{\pi }{7} \right)}{\sin \left( \dfrac{\pi }{7} \right)}............(1)
Since, we know that sin2A=2sinAcosA\sin 2A=2\sin A\cos A, so sin(π7)cos(π7)=sin(2π7)2\sin \left( \dfrac{\pi }{7} \right)\cos \left( \dfrac{\pi }{7} \right)=\dfrac{\sin \left( \dfrac{2\pi }{7} \right)}{2}
So, after putting sin(2π7)2\dfrac{\sin \left( \dfrac{2\pi }{7} \right)}{2}, in place of sin(π7)cos(π7)\sin \left( \dfrac{\pi }{7} \right)\cos \left( \dfrac{\pi }{7} \right), we will get:
=cos(3π7)cos(2π7)sin(2π7)2sin(π7)=\dfrac{\cos \left( \dfrac{3\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right)\sin \left( \dfrac{2\pi }{7} \right)}{2\sin \left( \dfrac{\pi }{7} \right)}
Similarly, we can also write sin(2π7)cos(2π7)\sin \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right) as sin(4π7)2\dfrac{\sin \left( \dfrac{4\pi }{7} \right)}{2}. So, after replacing we will get:
=cos(3π7)sin(4π7)4sin(π7)=\dfrac{\cos \left( \dfrac{3\pi }{7} \right)\sin \left( \dfrac{4\pi }{7} \right)}{4\sin \left( \dfrac{\pi }{7} \right)}
Now, we will convert sin(4π7)\sin \left( \dfrac{4\pi }{7} \right) into sin(3π7)\sin \left( \dfrac{3\pi }{7} \right) by using the trigonometric property sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta
So, we can rewrite the above function as:
=cos(3π7)sin(3π7)4sin(π7)=\dfrac{\cos \left( \dfrac{3\pi }{7} \right)\sin \left( \dfrac{3\pi }{7} \right)}{4\sin \left( \dfrac{\pi }{7} \right)}
Now, again we will use the property sin2A=2sinAcosA\sin 2A=2\sin A\cos A, then we will say that cos3π7sin3π7\cos \dfrac{3\pi }{7}\sin \dfrac{3\pi }{7} is equal to sin6π72\dfrac{\sin \dfrac{6\pi }{7}}{2} .
So, after putting sin6π72\dfrac{\sin \dfrac{6\pi }{7}}{2} in place of cos3π7sin3π7\cos \dfrac{3\pi }{7}\sin \dfrac{3\pi }{7} we will get:
=sin(6π7)8sin(π7)=\dfrac{\sin \left( \dfrac{6\pi }{7} \right)}{8\sin \left( \dfrac{\pi }{7} \right)}
Now, we know that sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta .
So, we can write sin(π6π7)=sin6π7\sin \left( \pi -\dfrac{6\pi }{7} \right)=\sin \dfrac{6\pi }{7} .
sin(π7)=sin6π7\Rightarrow \sin \left( \dfrac{\pi }{7} \right)=\sin \dfrac{6\pi }{7}
So, we can write sin(6π7)8sin(π7)\dfrac{\sin \left( \dfrac{6\pi }{7} \right)}{8\sin \left( \dfrac{\pi }{7} \right)} as sin(π7)8sin(π7)\dfrac{\sin \left( \dfrac{\pi }{7} \right)}{8\sin \left( \dfrac{\pi }{7} \right)}
Hence, value of sinπ14sin3π14sin5π14\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}= sin(π7)8sin(π7)=18\dfrac{\sin \left( \dfrac{\pi }{7} \right)}{8\sin \left( \dfrac{\pi }{7} \right)}=\dfrac{1}{8}

So, the correct answer is “Option b”.

Note: Students are required to memorize all the trigonometric properties and use them efficiently in such a way that they should be able to simplify them and get a simpler form of it. When we are given a sine function then we generally convert them first into cosine and then divide both numerator and denominator by the same sine function to simplify it.