Question
Question: The value of \[\sin \dfrac{\pi }{14}\cdot \sin \dfrac{3\pi }{14}\cdot \sin \dfrac{5\pi }{14}\cdot \s...
The value of sin14π⋅sin143π⋅sin145π⋅sin147π⋅sin149π⋅sin1411π⋅sin1413π is equal to:
a. 1
b. 161
c. 641
d. None of These
Solution
Hint: Express the obtuse angles in forms of smaller acute angles of sine. Then reduce it to simplified forms by changing sine to cosine.
Complete step-by-step answer:
Let, S = sin14π⋅sin143π⋅sin145π⋅sin147π⋅sin149π⋅sin1411π⋅sin1413π
Now we know that sinx=sin(π−x) for all real values of x.
So, S = sin14π⋅sin143π⋅sin145π⋅sin147π⋅sin(π−149π)⋅sin(π−1411π)⋅sin(π−1413π)
⇒ S = sin14π⋅sin143π⋅sin145π⋅sin147π⋅sin145π⋅sin143π⋅sin14π
Now we know that sin147π=sin2π=1.
⇒ S = (sin14π⋅sin143π⋅sin145π)2
We know that sinx=cos(2π−x) for all real values of x.
So, now S = (sin14π⋅cos(2π−143π)⋅cos(2π−145π))2
⇒ S = (sin14π⋅cos72π⋅cos7π)2
We know from multiple angle formulas that 2sinxcosx=sin2x for all real values of x.
⇒ S = 2cos14π1⋅2sin14π⋅cos14π⋅cos72π⋅cos7π2 [Multiplying numerator & denominator by same]
⇒ S = 2cos14π1⋅sin7π⋅cos72π⋅cos7π2 [Applying the above double angle formula]
⇒ S = 4cos14π1⋅2sin7π⋅cos7π⋅cos72π2 [Repeating the process]
⇒ S = 4cos14π1⋅sin72π⋅cos72π2 [Applying the above double angle formula]
⇒ S = 8cos14π1⋅2sin72π⋅cos72π2 [Repeating the process]
⇒ S = 8cos14π1⋅sin74π2 [Applying the above double angle formula]
Now sin74π=cos(2π−74π)=cos(−14π).
However, cosine is an even function. So cos(−x)=cosx for all real values of x.
⇒S = 8cos14π1⋅cos14π2 = (81)2=641.
Hence, we get the value of S. This is the required value for the given product.
Hence, the correct answer to the given question is option (c) 641.
Note: Expressing large multiples into smaller ones will lead the process simpler and make the calculations easier. You can also assume the common value as x and apply the same rules of multiples angles, and finally put back the value to get the desired result.