Solveeit Logo

Question

Question: The value of sin cot<sup>–1</sup> (tan (cos<sup>–1</sup> x)) is equal to-...

The value of sin cot–1 (tan (cos–1 x)) is equal to-

A

x

B

π2\frac{\pi}{2}

C

1

D

None of these

Answer

x

Explanation

Solution

Let cos–1 x = q ̃ x = cos q ̃ sec q = 1/x

̃ tan q = sec2θ1\sqrt{\sec^{2}\theta - 1}= 1/x 1x2\sqrt{1 - x^{2}}

Now sin cot–1 tan q = sincot–1(1/x1x21/x\sqrt{1 - x^{2}})

put x = sin q sin cot–1(1/x1x21/x\sqrt{1 - x^{2}})

= sin cot–1[1sin2θ/sinθ\sqrt{1 - \sin^{2}\theta}/\sin\theta]

= sin cot–1 (cot q) = sin q = x