Question
Question: The value of \[\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ \] ( A )\[\dfrac{1}{2}...
The value of sin78∘−sin66∘−sin42∘+sin6∘
( A )21
( B ) −21
( C ) -1
( D ) none of these
Solution
Hint : To solve this kind of questions we are going to use the following procedure given
below so that we can make our question solving process as simple as possible and that will be helpful to save our valuable time.
sinx−siny=2cos(2x+y)sin(2x−y)
After it put the value of sin or cos with angle
** Complete step-by-step answer** :
We are given the following trigonometric expression : sin78∘−sin66∘−sin42∘+sin6∘
Apply the above formula
\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = 2\cos \left( {\dfrac{{60^\circ + 18^\circ + 60^\circ - 18^\circ }}{2}} \right)\sin \left( {\dfrac{{60^\circ + 18^\circ - 60^\circ + 18^\circ }}{2}} \right) + 2\cos \left( {\dfrac{{6^\circ + 60^\circ + 6^\circ }}{2}} \right)\sin \left( {\dfrac{{6^\circ - 60^\circ - 6^\circ }}{2}} \right) \\\ = 2\cos \left( {60^\circ } \right)\sin \left( {18^\circ } \right) + 2\cos \left( {36^\circ } \right)\sin ( - 30^\circ ) \\\ = 2.\dfrac{1}{2}\sin \left( {18^\circ } \right) - 2.\dfrac{1}{2}\cos \left( {36^\circ } \right) \\\ = \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\\ $$Substitute the value of $ \sin \left( {18^\circ } \right) $ and $ \cos \left( {36^\circ } \right) $ in the above equation.\Rightarrow \sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\
= \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4} \\
= \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4} \\
= \dfrac{{ - 2}}{4} \\
= - \dfrac{1}{2} \\