Solveeit Logo

Question

Question: The value of \(\sin 47^{o} + \sin 61{^\circ} - \sin 11{^\circ} - \sin 25{^\circ} =\)...

The value of sin47o+sin61sin11sin25=\sin 47^{o} + \sin 61{^\circ} - \sin 11{^\circ} - \sin 25{^\circ} =

A

sin36\sin 36{^\circ}

B

cos36\cos 36{^\circ}

C

sin7\sin 7{^\circ}

D

cos7\cos 7{^\circ}

Answer

cos7\cos 7{^\circ}

Explanation

Solution

sin47o+sin61o(sin11o+sin25o)\sin{}47^{o} + \sin{}61^{o} - (\sin{}11^{o} + \sin{}25^{o})

=sin20osin40osin80ocos20ocos40ocos80o= \frac{\sin 20^{o}\sin 40^{o}\sin 80^{o}}{\cos 20^{o}\cos 40^{o}\cos 80^{o}}

=2cos7o(sin54osin18o)= 2\cos{}7^{o}(\sin{}54^{o} - \sin{}18^{o})

=2cos7o.2cos36o.sin18o= 2\cos{}7^{o}.2\cos{}36^{o}.\sin{}18^{o}

=4.cos7o.5+14.514=cos7o.= 4.\cos{}7^{o}.\frac{\sqrt{5} + 1}{4}.\frac{\sqrt{5} - 1}{4} = \cos{}7^{o.}.