Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of sin4π8+sin43π8+sin45π8+sin47π8\sin^{4} \frac{\pi}{8} + \sin^{4} \frac{3 \pi}{8} + \sin^{4} \frac{5\pi}{8} + \sin^{4} \frac{7\pi}{8} is

A

34\frac{\sqrt{3}}{4}

B

34\frac{3}{4}

C

32\frac{\sqrt{3}}{2}

D

32\frac{3}{2}

Answer

32\frac{3}{2}

Explanation

Solution

We have, 7π8=ππ8\frac{7\pi}{8}=\pi-\frac{\pi}{8}
and 5π8=π3π8\frac{5\pi}{8}=\pi-\frac{3\pi}{8}
sin7π8=sin(ππ8)\Rightarrow \sin \frac{7\pi}{8}=\sin\left(\pi-\frac{\pi}{8}\right)
and sin5π8=sin(π3π8)\sin \frac{5\pi}{8}=\sin\left(\pi-\frac{3\pi}{8}\right)
sin7π8=sinπ8\Rightarrow \sin \frac{7\pi}{8}=\sin \frac{\pi}{8} and sin5π8=sin3π8\sin \frac{5\pi}{8}=\sin \frac{3\pi}{8}
sin4(7π8)=sin4(π8)\Rightarrow \sin^{4}\left(\frac{7\pi}{8}\right)=\sin^{4}\left(\frac{\pi}{8}\right)
and sin4(5π8)=sin4(3π8)\sin^{4}\left(\frac{5\pi}{8}\right)=\sin^{4}\left(\frac{3\pi}{8}\right)
Now, sin4(π8)+sin4(3π8)+sin4(5π8)+sin4(7π8)\sin^{4}\left(\frac{\pi}{8}\right)+\sin^{4}\left(\frac{3\pi}{8}\right)+\sin^{4}\left(\frac{5\pi}{8}\right)+\sin^{4}\left(\frac{7\pi}{8}\right)
=sin4(π8)+sin4(3π8)+sin4(3π8)+sin4(π8)=\sin^{4}\left(\frac{\pi}{8}\right)+\sin^{4}\left(\frac{3\pi}{8}\right)+\sin^{4}\left(\frac{3\pi}{8}\right)+\sin^{4}\left(\frac{\pi}{8}\right)
=2sin4(π8)+2sin4(3π8)=2\sin^{4}\left(\frac{\pi}{8}\right)+2\sin^{4}\left(\frac{3\pi}{8}\right)
=2[(sin2π8)2+(sin2(3π8))2]=2\left[\left(\sin^{2} \frac{\pi}{8}\right)^{2}+\left(\sin^{2}\left(\frac{3\pi}{8}\right)\right)^{2}\right]
=2[(1cos2(π8)2)2+(1cos2(3π8)2)2]=2\left[\left(\frac{1-\cos\,2\left(\frac{\pi}{8}\right)}{2}\right)^{2}+\left(\frac{1-\cos\,2\left(\frac{3\pi}{8}\right)}{2}\right)^{2}\right]
=2[(1cosπ4)24+(1cos3π4)24]=2\left[\frac{\left(1-\cos \frac{\pi}{4}\right)^{2}}{4}+\frac{\left(1-\cos \frac{3\pi}{4}\right)^{2}}{4}\right]
=12[(112)2+(1+12)2]=\frac{1}{2}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right]
[cosπ4=12andcos3π4=12]\left[\because \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \,\text{and} \,\cos \frac{3\pi}{4}=\frac{-1}{\sqrt{2}}\right]
=12[1+1222+1+12+22]=\frac{1}{2}\left[1+\frac{1}{2}-\frac{2}{\sqrt{2}}+1+\frac{1}{2}+\frac{2}{\sqrt{2}}\right]
=12[2+22]=12[2+1]=32=\frac{1}{2}\left[2+\frac{2}{2}\right]=\frac{1}{2}\left[2+1\right]=\frac{3}{2}