Question
Mathematics Question on Trigonometric Functions
The value of sin48π+sin483π+sin485π+sin487π is
A
43
B
43
C
23
D
23
Answer
23
Explanation
Solution
We have, 87π=π−8π
and 85π=π−83π
⇒sin87π=sin(π−8π)
and sin85π=sin(π−83π)
⇒sin87π=sin8π and sin85π=sin83π
⇒sin4(87π)=sin4(8π)
and sin4(85π)=sin4(83π)
Now, sin4(8π)+sin4(83π)+sin4(85π)+sin4(87π)
=sin4(8π)+sin4(83π)+sin4(83π)+sin4(8π)
=2sin4(8π)+2sin4(83π)
=2[(sin28π)2+(sin2(83π))2]
=2[(21−cos2(8π))2+(21−cos2(83π))2]
=2[4(1−cos4π)2+4(1−cos43π)2]
=21[(1−21)2+(1+21)2]
[∵cos4π=21andcos43π=2−1]
=21[1+21−22+1+21+22]
=21[2+22]=21[2+1]=23