Solveeit Logo

Question

Question: The value of \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]is: (a) \[\...

The value of sin36sin72sin108sin144\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }is:
(a) 14\dfrac{1}{4}
(b) 16\dfrac{1}{6}
(c) 34\dfrac{3}{4}
(d) 516\dfrac{5}{{16}}

Explanation

Solution

Trigonometric formulae that will be helpful in solving such questions:

  1. 2sinA×sinB=cos(AB)cos(A+B)2\sin A \times \sin B = \cos (A - B) - \cos (A + B)
  2. sin(θ)=sin(θ)\sin ( - \theta ) = - \sin (\theta )
  3. cos(θ)=cos(θ)\cos ( - \theta ) = \cos (\theta )

Complete step by step solution:
Given: sin36sin72sin108sin144\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }

sin36sin72sin(18072)sin(18036) sin36sin72sin72sin36......(sin(180θ)=sinθ) (sin36)2(sin72)2 (2sin72×sin36)2  \Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {(180 - 72)^ \circ }\sin {(180 - 36)^ \circ } \\\ \Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {72^ \circ }\sin {36^ \circ }......\left( {\because \sin ({{180}^ \circ } - \theta ) = \sin \theta } \right) \\\ \Rightarrow {\left( {\sin {{36}^ \circ }} \right)^2}{\left( {\sin {{72}^ \circ }} \right)^2} \\\ \Rightarrow {\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)^2} \\\

Multiplying and dividing by 2 we get;

\Rightarrow \dfrac{1}{4}\left\\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\\} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\\} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\\}^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\\}^2}....................Eq:01 \\\

Now, let us find the value of sin18\sin {18^ \circ }.
Let, θ=18\theta = {18^ \circ }
Multiplying both sides by 5 we get;

5θ=90 2θ+3θ=90 2θ=903θ  \Rightarrow 5\theta = {90^ \circ } \\\ \Rightarrow 2\theta + 3\theta = {90^ \circ } \\\ \Rightarrow 2\theta = {90^ \circ } - 3\theta \\\

On applying sinθ\sin \theta both sides,

sin(2θ)=sin(903θ) sin(2θ)=co(3θ)......(sin(90θ)=cosθ) 2sinθcosθ=4cos3θ3cosθ 2sinθ=4cos2θ3 2sinθ=4(1sin2θ)3 4sin2θ+2sinθ1=0  \Rightarrow \sin (2\theta ) = \sin ({90^ \circ } - 3\theta ) \\\ \Rightarrow \sin (2\theta ) = \operatorname{co} (3\theta )......\because \left( {\sin ({{90}^ \circ } - \theta ) = \cos \theta } \right) \\\ \Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta \\\ \Rightarrow 2\sin \theta = 4{\cos ^2}\theta - 3 \\\ \Rightarrow 2\sin \theta = 4\left( {1 - {{\sin }^2}\theta } \right) - 3 \\\ \Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0 \\\

Put (x) in place of sinθ\sin \theta ,
4x2+2x1=0\Rightarrow 4{x^2} + 2x - 1 = 0
Using discriminant formula, solve the above quadratic equation;

x=2±(2)24(4)(1)2(4) x=2±4+162(4) x=2±202(4) x=2±252(4) x=±514  \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(4)( - 1)} }}{{2(4)}} \\\ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{{2(4)}} \\\ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {20} }}{{2(4)}} \\\ \Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 5 }}{{2(4)}} \\\ \Rightarrow x = \dfrac{{ \pm \sqrt 5 - 1}}{4} \\\

Putting back the value of x and θ\theta in above equation,
sin18=514......[18  lie in first quadrant so it must be positive]\Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}......\because \left[ {{{18}^ \circ }\;lie{\text{ }}in{\text{ }}first{\text{ }}quadrant{\text{ }}so{\text{ }}it{\text{ }}must{\text{ }}be{\text{ }}positive} \right]
Similarly, the value of cos36=5+14\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}.
Putting back the values of sin18\sin {18^ \circ }and cos36\cos {36^ \circ }in Eq:01,

\Rightarrow \dfrac{1}{4}{\left\\{ {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right\\}^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {2\dfrac{{\sqrt 5 }}{4}} \right\\}^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {\dfrac{{\sqrt 5 }}{2}} \right\\}^2} \\\ \Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) = \dfrac{5}{{16}} \\\

Our required value is 516\dfrac{5}{{16}}.

Option (D) is correct.

Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.