Question
Question: The value of \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]is: (a) \[\...
The value of sin36∘sin72∘sin108∘sin144∘is:
(a) 41
(b) 61
(c) 43
(d) 165
Solution
Trigonometric formulae that will be helpful in solving such questions:
- 2sinA×sinB=cos(A−B)−cos(A+B)
- sin(−θ)=−sin(θ)
- cos(−θ)=cos(θ)
Complete step by step solution:
Given: sin36∘sin72∘sin108∘sin144∘
Multiplying and dividing by 2 we get;
\Rightarrow \dfrac{1}{4}\left\\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\\} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\\} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\\ \Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\\}^2} \\\ \Rightarrow \dfrac{1}{4}{\left\\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\\}^2}....................Eq:01 \\\Now, let us find the value of sin18∘.
Let, θ=18∘
Multiplying both sides by 5 we get;
On applying sinθboth sides,
⇒sin(2θ)=sin(90∘−3θ) ⇒sin(2θ)=co(3θ)......∵(sin(90∘−θ)=cosθ) ⇒2sinθcosθ=4cos3θ−3cosθ ⇒2sinθ=4cos2θ−3 ⇒2sinθ=4(1−sin2θ)−3 ⇒4sin2θ+2sinθ−1=0Put (x) in place of sinθ,
⇒4x2+2x−1=0
Using discriminant formula, solve the above quadratic equation;
Putting back the value of x and θin above equation,
⇒sin18∘=45−1......∵[18∘lie in first quadrant so it must be positive]
Similarly, the value of cos36∘=45+1.
Putting back the values of sin18∘and cos36∘in Eq:01,
Our required value is 165.
Option (D) is correct.
Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.