Question
Question: The value of \( {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} \) is equal to: \( A.\,\...
The value of sin3100+sin3500−sin3700 is equal to:
A.81 B.8−3 C.8−1 D.Noneofthese
Solution
Hint : To find value we first show that value of sin100+sin500−sin700 is zero, then writing sin3100+sin3500−sin3700 as 3sin100sin500(−sin700) by using algebraic identity and finally solving it by using identity of trigonometry to get required value of the problem.
(A3+B3+C3−3ABC)=(A+B+C)(A2+B2+C2−AB−BC−CA) , sin3A=3sinA−4sin3A
And sinC−sinD=2cos(2C+D)sin(2C−D) , sin(A+B)sin(A−B)=sin2A−sin2B
Complete step-by-step answer :
We have given,
sin3100+sin3500−sin3700
Or we can write it as:
(sin100)3+(sin500)3+(−sin700)3
Or
{\left( {\sin {{10}^0}} \right)^3} + {\left( {\sin {{50}^0}} \right)^3} + {\left\\{ {\sin \left( { - {{70}^0}} \right)} \right\\}^3}
Also, from identity we have:
A3+B3+C3=3ABC,ifA+B+C=0
Therefore, to get solution of the problem, we just show that sin100+sin500+sin(−700)=0
Now, solving sin100+sin500+sin(−700)
We can write it as:
\sin {10^0} + \sin {50^0} - \sin {70^0} \left\\{ {\sin ( - \theta ) = - \sin \theta } \right\\}
Applying identity to simplify
2\sin \left\\{ {\dfrac{{10 + 50}}{2}} \right\\}\cos \left\\{ {\dfrac{{10 - 50}}{2}} \right\\} - \sin {70^0} \\\
\Rightarrow 2\sin {30^0} \cos \left( { - {{20}^0}} \right) - \sin {70^0} \left\\{ {\cos ( - \theta ) = \cos \theta } \right\\} \\\
\Rightarrow 2\times\dfrac{1}{2}\cos {20^0} - \sin {70^0} \\\
⇒cos200−sin700
\Rightarrow \sin \left( 90^0 - 20^0 \right) - \sin {70^0} \left\\{ {\cos \theta = \sin \left( {{{90}^0}\theta } \right)} \right\\}
⇒sin700−sin700=0
Therefore, we have
sin3100+sin3500−sin3700=3.(sin100)(sin500)(−sin700)
Now, simplifying the right hand side of the above equation. We have
\- 3\sin {10^0}\sin {50^0}\sin {70^0} \\\
\Rightarrow - 3\sin {10^0}\sin \left( {60 - 10} \right)\sin \left( {60 + 10} \right) \\\
\Rightarrow - 3\sin {10^0}\left\\{ {{{\sin }^2}{{60}^0} - {{\sin }^2}10} \right\\} \\\
\Rightarrow - 3\sin {10^0}\left\\{ {{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2} - {{\sin }^2}{{10}^0}} \right\\} \\\
\Rightarrow - 3\sin {10^0}\left\\{ {\dfrac{3}{4} - {{\sin }^2}{{10}^0}} \right\\} \\\
\Rightarrow - 3\sin {10^0}\left( {\dfrac{{3 - 4{{\sin }^2}10}}{4}} \right) \\\
\Rightarrow - 3\left( {\dfrac{{3\sin {{10}^0} - 4{{\sin }^3}10}}{4}} \right) \\\
\Rightarrow \dfrac{{ - 3}}{4} \times \sin 3\left( {{{10}^0}} \right) \\\
\Rightarrow \dfrac{{ - 3}}{4}\sin {30^0} \\\
\Rightarrow - \dfrac{3}{4} \times \dfrac{1}{2} \\\
\Rightarrow - \dfrac{3}{8} \;
Hence, from above we have:
sin3100+sin3500−sin3700=−83
Therefore, required value of sin3100+sin3500−sin3700is−83
So, the correct answer is “Option B”.
Note : Solution of the given problems can also be found in other ways. In this we use a different trigonometric identity to find its value. In this we substitute value of sin3A,as43sinx−sin3x on each term and then writing value of standard angle and simplify rest of the term by using different trigonometric formulas to find required solution.