Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of sin20sin40sin60sin80\sin \, 20^{\circ} \, \sin \, 40^{\circ} \sin \, 60^{\circ} \, \sin \, 80^{\circ} is

A

316\frac{-3}{16}

B

516\frac{5}{16}

C

316\frac{3}{16}

D

116\frac{1}{16}

Answer

316\frac{3}{16}

Explanation

Solution

Indeed sin20sin40sin60sin80\sin \, 20^{\circ} \, \sin \, 40^{\circ} \, \sin \, 60^{\circ} \, \sin \, 80^{\circ}. =32sin20sin(6020)sin(60+20) = \frac{\sqrt{3}}{2} \sin \, 20^{\circ} \sin (60^{\circ} - 20^{\circ} ) \sin (60^{\circ} + 20^{\circ} ) (since sin60=32\sin 60^{\circ} = \frac{\sqrt{3}}{2} ) =32sin20[sin260sin220] = \frac{\sqrt{3}}{2} \sin20^{\circ} \left[\sin^{2} 60^{\circ} - \sin^{2}20^{\circ}\right] =32sin20[34sin220]= \frac{\sqrt{3}}{2} \sin 20^{\circ} \left[\frac{3}{4} - \sin^{2} 20^{\circ}\right] =32×14[3sin204sin320]= \frac{\sqrt{3}}{2} \times\frac{1}{4} \left[3 \sin20^{\circ} - 4 \sin^{3} 20^{\circ}\right] =32×14(sin60)= \frac{\sqrt{3}}{2} \times\frac{1}{4} \left(\sin60^{\circ}\right) =32×14×32=316= \frac{\sqrt{3}}{2} \times \frac{1}{4} \times\frac{\sqrt{3}}{2} = \frac{3}{16}