Solveeit Logo

Question

Question: The value of \(\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0}\) is \(\left( A \right)\). \(\dfrac{{...

The value of sin200sin400sin600sin800\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0} is
(A)\left( A \right). 316\dfrac{{ - 3}}{{\sqrt {16} }}
(B)\left( B \right). 516\dfrac{5}{{\sqrt {16} }}
(C)\left( C \right). 316\dfrac{3}{{\sqrt {16} }}
(D)\left( D \right). 516\dfrac{{ - 5}}{{\sqrt {16} }}

Explanation

Solution

Hint: In the above problem the trigonometric product to sum identities should be used. The identity to be used is to be determined by inspection so that the result gives angle with general known trigonometric ratio.

Given in the problem, we need to find value of the expression
sin200sin400sin600sin800\sin {20^0}\sin {40^0}\sin {60^0}\sin {80^0} …………………………….. (1)
We need to group terms so that using a product to sum trigonometric formula gives angles whose trigonometric value is known.
We know that value of
cos(xy)cos(x+y)=2sinxsiny\cos (x - y) - \cos (x + y) = 2\sin x\sin y …………………………………...(2)
Put x=80x = 80and y=40y = 40in the equation (2) ,we get

2sin800sin400=cos(800400)cos(800+400) 2sin800sin400=cos(400)cos(1200)  2\sin {80^0}\sin {40^0} = \cos ({80^0} - {40^0}) - \cos ({80^0} + {40^0}) \\\ \Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) \\\

We know that cos(1800θ)=cosθ\cos \left( {{{180}^0} - \theta } \right) = - \cos \theta
Put θ=600\theta = {60^0} in above cos1200=cos(1800600)=cos600=12 \Rightarrow \cos {120^0} = \cos \left( {{{180}^0} - {{60}^0}} \right) = - \cos {60^0} = - \dfrac{1}{2}
2sin800sin400=cos(400)cos(1200)=cos(400)+12\Rightarrow 2\sin {80^0}\sin {40^0} = \cos ({40^0}) - \cos ({120^0}) = \cos ({40^0}) + \dfrac{1}{2} …………………(3)
Multiplying expression (1) with 22\dfrac{2}{2} and rearranging, we get
2sin800sin400sin600sin2002\dfrac{{2\sin {{80}^0}\sin {{40}^0}\sin {{60}^0}\sin {{20}^0}}}{2}
Using equation (3) in above, we get
(cos400+12)sin600sin2002\left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sin {{60}^0}\sin {{20}^0}}}{2}
Using sin600=32\sin {60^0} = \dfrac{{\sqrt 3 }}{2} in above,
(cos400+12)34sin200\Rightarrow \left( {\cos {{40}^0} + \dfrac{1}{2}} \right)\dfrac{{\sqrt 3 }}{4}\sin {20^0}
38(2sin200cos400+sin200)\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right) …………………………………………………...(4)
We know that value of
sin(x+y)+sin(xy)=2sinxcosy\sin (x + y) + \sin (x - y) = 2\sin x\cos y ……………………………………………...(5)
Put x=20x = 20and y=40y = 40in the equation (5), we get

2sin200cos400=sin(200+400)+sin(200400) 2sin200sin400=sin(600)+sin(200)  2\sin {20^0}\cos {40^0} = \sin ({20^0} + {40^0}) + \sin ({20^0} - {40^0}) \\\ \Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) + \sin ( - {20^0}) \\\

We know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta
Put θ=200\theta = {20^0} in above gives sin(200)=sin200\sin \left( { - {{20}^0}} \right) = - \sin {20^0}
2sin200sin400=sin(600)sin(200)=32sin(200)\Rightarrow 2\sin {20^0}\sin {40^0} = \sin ({60^0}) - \sin ({20^0}) = \dfrac{{\sqrt 3 }}{2} - \sin ({20^0}) ……………………………….(6)
Using equation (6) in (4), we get

38(2sin200cos400+sin200)=38(32sin200+sin200) 38(32)=316  \dfrac{{\sqrt 3 }}{8}\left( {2\sin {{20}^0}\cos {{40}^0} + \sin {{20}^0}} \right) = \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2} - \sin {{20}^0} + \sin {{20}^0}} \right) \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{3}{{16}} \\\

Therefore, the value of expression (1) is 316\dfrac{3}{{16}}.
Hence option (C)(C) 316\dfrac{3}{{16}} is the correct answer.

Note: Always remember trigonometric sum to product and product to sum formula. Modifications may need to be performed in the expressions like above in order to use these identities. These modifications should never alter the value of the original expression. Try to convert the expression in problems of above type into known trigonometric ratio values.