Solveeit Logo

Question

Question: The value of \[{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{...

The value of sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3} is

Explanation

Solution

Try to express the angles of the trigonometric terms in the form of (nπ±θ)(n\pi \pm \theta ) where nNn \in \mathbb{N} in order to reduce them into some known angles and then put the values of the angles according to their quadrant as the angles are positive or negative in accordance with the 4-quadrant system.

Complete step-by-step answer:
Given, sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3}
Now, we will express all the angles in the form of (nπ±θ)(n\pi \pm \theta )where nNn \in \mathbb{N}
sin2(ππ4)+sec2(2ππ3)tan2(ππ3)\Rightarrow {\sin ^2}\left( {\pi - \dfrac{\pi }{4}} \right) + {\sec ^2}\left( {2\pi - \dfrac{\pi }{3}} \right) - {\tan ^2}\left( {\pi - \dfrac{\pi }{3}} \right)
Since, sin(πθ)=sinθ,sec(2πθ)=secθ,tan(πθ)=tan(θ)\sin (\pi - \theta ) = \sin \theta ,\sec (2\pi - \theta ) = \sec \theta ,\tan \left( {\pi - \theta } \right) = -\tan ( \theta )
sin2(π4)+sec2(π3)tan2(π3)\Rightarrow {\sin ^2}\left( {\dfrac{\pi }{4}} \right) + {\sec ^2}\left( {\dfrac{\pi }{3}} \right) - {\tan ^2}\left( { - \dfrac{\pi }{3}} \right)

=(12)2+(2)2(3)2 =12+43 =32  = {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + {(2)^2} - {\left( {\sqrt 3 } \right)^2} \\\ = \dfrac{1}{2} + 4 - 3 \\\ = \dfrac{3}{2} \\\

Therefore, the value of sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3} is 3/2

Note: These types of questions require the angles of the terms to be reduced into some known angles. The idea of signs of different trigonometric functions in different quadrants is essential.