Solveeit Logo

Question

Question: The value of \({\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{...

The value of sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3} is

Explanation

Solution

We have 3 trigonometric functions. We can convert the angles to sum or difference ofπ\pi . Then we can find their values using the equations sin(πx)=sinx\sin \left( {\pi - x} \right) = \sin x, sec(2πx)=secx\sec \left( {2\pi - x} \right) = \sec xand tan(πx)=tanx\tan \left( {\pi - x} \right) = - \tan x. Then we can square these values and substitute in the given expression to get the required answer.

Complete step by step answer:

We have the expression sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3}. We can find the value of each term separately and add them together to get the required value of the expression.
Let us take the 1st term, sin23π4{\sin ^2}\dfrac{{3\pi }}{4}.
The angle 3π4\dfrac{{3\pi }}{4} can be written as ππ4\pi - \dfrac{\pi }{4}.
sin3π4=sin(ππ4)\Rightarrow \sin \dfrac{{3\pi }}{4} = \sin \left( {\pi - \dfrac{\pi }{4}} \right)
We know that, sin(πx)=sinx\sin \left( {\pi - x} \right) = \sin x. Applying this, we get,
sin3π4=sin(π4)\Rightarrow \sin \dfrac{{3\pi }}{4} = \sin \left( {\dfrac{\pi }{4}} \right)
We know that sin(π4)=12\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}.
sin3π4=12\Rightarrow \sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}
Taking the square, we get,
sin23π4=12\Rightarrow {\sin ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2} … (1)
Now we can take the 2nd term, sec25π3{\sec ^2}\dfrac{{5\pi }}{3}
The angle 5π3\dfrac{{5\pi }}{3}can be written as 2ππ32\pi - \dfrac{\pi }{3}.
sec5π3=sec(2ππ3)\Rightarrow \sec \dfrac{{5\pi }}{3} = \sec \left( {2\pi - \dfrac{\pi }{3}} \right)
We know that, sec(2πx)=secx\sec \left( {2\pi - x} \right) = \sec x
sec5π3=sec(π3)\Rightarrow \sec \dfrac{{5\pi }}{3} = \sec \left( {\dfrac{\pi }{3}} \right)
We know that sec(π3)=2\sec \left( {\dfrac{\pi }{3}} \right) = 2
sec5π3=2\Rightarrow \sec \dfrac{{5\pi }}{3} = 2
Taking the square, we get,
sec25π3=4\Rightarrow {\sec ^2}\dfrac{{5\pi }}{3} = 4 … (2)
Now we can take the 3rd term, tan22π3{\tan ^2}\dfrac{{2\pi }}{3}
The angle 2π3\dfrac{{2\pi }}{3}can be written as ππ3\pi - \dfrac{\pi }{3}.
tan2π3=tan(ππ3)\Rightarrow \tan \dfrac{{2\pi }}{3} = \tan \left( {\pi - \dfrac{\pi }{3}} \right)
We know that,tan(πx)=tanx\tan \left( {\pi - x} \right) = - \tan x
tan2π3=tan(π3)\Rightarrow \tan \dfrac{{2\pi }}{3} = - \tan \left( {\dfrac{\pi }{3}} \right)
We know that tan(π3)=3\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3
tan2π3=3\Rightarrow \tan \dfrac{{2\pi }}{3} = - \sqrt 3
Taking the square, we get,
tan22π3=3\Rightarrow {\tan ^2}\dfrac{{2\pi }}{3} = 3 … (3)
On substituting equations (1), (2) and (3) in the given expression, we get,
sin23π4+sec25π3tan22π3{\sin ^2}\dfrac{{3\pi }}{4} + {\sec ^2}\dfrac{{5\pi }}{3} - {\tan ^2}\dfrac{{2\pi }}{3}
=12+43= \dfrac{1}{2} + 4 - 3
=12+1=32= \dfrac{1}{2} + 1 = \dfrac{3}{2}
Therefore the value of the given expression is 32\dfrac{3}{2}

Note: We must know the values of trigonometric functions at common angles. Adding π\pi or multiples of π\pi with the angle retains the ratio and adding π2\dfrac{\pi }{2}or odd multiples of π2\dfrac{\pi }{2}will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The following figure gives us an idea about the signs of different trigonometric functions. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.