Solveeit Logo

Question

Question: The value of \(\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ ...

The value of sin100+sin200+sin290+sin380\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }} is
(A) 0
(B) 2cos10-2\cos {{10}^{\circ }}
(C) 2sin10-2\sin {{10}^{\circ }}
(D) None

Explanation

Solution

We start solving this question by taking the trigonometric identities such as sin(360+x)=sinx\sin \left( {{360}^{\circ }}+x \right)=\sin x, sin(360x)=sinx\sin \left( {{360}^{\circ }}-x \right)=-\sin x and sin(90x)=cosx\sin \left( {{90}^{\circ }}-x \right)=\cos x. Then we use them to find the values of sin100\sin {{100}^{\circ }}, sin200\sin {{200}^{\circ }}, sin290\sin {{290}^{\circ }} and sin380\sin {{380}^{\circ }} in terms of sin10\sin {{10}^{\circ }} and cos10\cos {{10}^{\circ }}. Then which of the options has the answer that we got and mark it.

Complete step-by-step answer:
Before solving the question, we need to go through some trigonometric identities.
sin(360+x)=sinx sin(360x)=sinx sin(180+x)=sinx sin(180x)=sinx sin(90+x)=cosx sin(90x)=cosx \begin{aligned} & \sin \left( {{360}^{\circ }}+x \right)=\sin x \\\ & \sin \left( {{360}^{\circ }}-x \right)=-\sin x \\\ & \sin \left( {{180}^{\circ }}+x \right)=-\sin x \\\ & \sin \left( {{180}^{\circ }}-x \right)=\sin x \\\ & \sin \left( {{90}^{\circ }}+x \right)=-\cos x \\\ & \sin \left( {{90}^{\circ }}-x \right)=\cos x \\\ \end{aligned}
Now let us consider the given expression sin100+sin200+sin290+sin380\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}.
Let us consider sin100\sin {{100}^{\circ }}, we can apply the above discussed identity sin(90+x)=cosx\sin \left( {{90}^{\circ }}+x \right)=-\cos x to it.
sin(100)=sin(90+10)=cos10\sin \left( {{100}^{\circ }} \right)=\sin \left( {{90}^{\circ }}+{{10}^{\circ }} \right)=-\cos {{10}^{\circ }}
Now let us consider sin200\sin {{200}^{\circ }}. Let us apply the property sin(180+x)=sinx\sin \left( {{180}^{\circ }}+x \right)=-\sin x discussed above to it.
sin200=sin(180+20)=sin20\sin {{200}^{\circ }}=\sin \left( {{180}^{\circ }}+{{20}^{\circ }} \right)=-\sin {{20}^{\circ }}
Now let us consider sin290\sin {{290}^{\circ }}. Let us apply the property sin(270+x)=cosx\sin \left( {{270}^{\circ }}+x \right)=-\cos x discussed above to it.
sin290=sin(270+20)=cos20\sin {{290}^{\circ }}=\sin \left( {{270}^{\circ }}+{{20}^{\circ }} \right)=-\cos {{20}^{\circ }}
Now let us consider sin380\sin {{380}^{\circ }}. Let us apply the property sin(360+x)=sinx\sin \left( {{360}^{\circ }}+x \right)=\sin x discussed above to it.
sin380=sin(360+20)=sin20\sin {{380}^{\circ }}=\sin \left( {{360}^{\circ }}+{{20}^{\circ }} \right)=\sin {{20}^{\circ }}
So, by adding them we can find our required value. So, we get
sin100+sin200+sin290+sin380=cos10sin20cos20+sin20 sin100+sin200+sin290+sin380=cos10cos20 \begin{aligned} & \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\sin {{20}^{\circ }}-\cos {{20}^{\circ }}+\sin {{20}^{\circ }} \\\ & \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\cos {{20}^{\circ }} \\\ \end{aligned}
Hence the value we get is (cos10+cos20)-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right).
Now let us consider the formula,
cosA+cosB=2cosA+B2cosAB2\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}
Using this formula, we can write (cos10+cos20)-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right) as
(cos10+cos20)=2cos10+202cos10202 (cos10+cos20)=2cos15cos(5) \begin{aligned} & \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos \dfrac{{{10}^{\circ }}+{{20}^{\circ }}}{2}\cos \dfrac{{{10}^{\circ }}-{{20}^{\circ }}}{2} \\\ & \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos {{15}^{\circ }}\cos \left( -{{5}^{\circ }} \right) \\\ \end{aligned}
As cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta
Hence the value we get is 2cos15cos5-2\cos {{15}^{\circ }}\cos {{5}^{\circ }}.

So, the correct answer is “Option D”.

Note: The common mistake that one does while solving this type of problem is one might take the trigonometric identities wrong by taking the wrong sign like taking sin(180x)=sinx\sin \left( {{180}^{\circ }}-x \right)=-\sin x while the actual one is sin(180x)=sinx\sin \left( {{180}^{\circ }}-x \right)=-\sin x or by taking sine instead of cosine like taking the identity as sin(90x)=sinx\sin \left( {{90}^{\circ }}-x \right)=\sin x and sin(360x)=sinx\sin \left( {{360}^{\circ }}-x \right)=\sin x which are also wrong. So, one needs to be careful while applying the trigonometric identities.