Solveeit Logo

Question

Question: The value of \({{\sin }^{-1}}\left[ \cot \left( {{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}}+{{\cos }^...

The value of sin1[cot(sin1234+cos1124+sec12)]{{\sin }^{-1}}\left[ \cot \left( {{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}}+{{\cos }^{-1}}\dfrac{\sqrt{12}}{4}+{{\sec }^{-1}}\sqrt{2} \right) \right] is?
(a) 0
(b) π2\dfrac{\pi }{2}
(c) π3\dfrac{\pi }{3}
(d) None of these

Explanation

Solution

Simplify the argument of the inverse cosine function by using the prime factorization of 12\sqrt{12} and cancelling the common factors with the denominator. Now, to find the values of cos132{{\cos }^{-1}}\dfrac{\sqrt{3}}{2} and sec12{{\sec }^{-1}}\sqrt{2} find the value of the angle for which the value of the cosine function is 32\dfrac{\sqrt{3}}{2} in the range of angles [0,π]\left[ 0,\pi \right] and the value of the secant function is 2\sqrt{2} in the range of angles [0,π2)(π2,π]\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right] respectively. Substitute the value of that angle in the given expression. For the term (sin1234)\left( {{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}} \right), find the value of sin15\sin {{15}^{\circ }} using the identity cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta and substituting the value of θ\theta equal to 15{{15}^{\circ }}. Check if we get sin15=234\sin {{15}^{\circ }}=\sqrt{\dfrac{2-\sqrt{3}}{4}} and substitute this angle in terms of radian. Finally, add all the angles and find the value of the co – tangent of this resultant sum of angles and find the value of inverse sine function of this co – tangent value in the range of angles [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].

Complete step by step answer:
Here we have been provided with the expression sin1[cot(sin1234+cos1124+sec12)]{{\sin }^{-1}}\left[ \cot \left( {{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}}+{{\cos }^{-1}}\dfrac{\sqrt{12}}{4}+{{\sec }^{-1}}\sqrt{2} \right) \right] and we are asked to find its value. Let us assume this expression as E, so we have,
E=sin1[cot(sin1234+cos1124+sec12)]\Rightarrow E={{\sin }^{-1}}\left[ \cot \left( {{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}}+{{\cos }^{-1}}\dfrac{\sqrt{12}}{4}+{{\sec }^{-1}}\sqrt{2} \right) \right]
Now, first we need to find the values of the inverse functions present inside the small bracket. We have the functions sin1234,cos1124{{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}},{{\cos }^{-1}}\dfrac{\sqrt{12}}{4} and sec12{{\sec }^{-1}}\sqrt{2} inside the bracket. Let us find their values one by one.
(1) sin1234{{\sin }^{-1}}\sqrt{\dfrac{2-\sqrt{3}}{4}} means the value of angle whose value of the sine function is 234\sqrt{\dfrac{2-\sqrt{3}}{4}} in the range of angles [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]. Now, we know that cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} so using the trigonometric identity cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta we have,
cos(2×15)=12sin215 cos(30)=12sin215 32=12sin215 sin215=12(132) \begin{aligned} & \Rightarrow \cos \left( 2\times {{15}^{\circ }} \right)=1-2{{\sin }^{2}}{{15}^{\circ }} \\\ & \Rightarrow \cos \left( {{30}^{\circ }} \right)=1-2{{\sin }^{2}}{{15}^{\circ }} \\\ & \Rightarrow \dfrac{\sqrt{3}}{2}=1-2{{\sin }^{2}}{{15}^{\circ }} \\\ & \Rightarrow {{\sin }^{2}}{{15}^{\circ }}=\dfrac{1}{2}\left( 1-\dfrac{\sqrt{3}}{2} \right) \\\ \end{aligned}
Taking square root both the sides we get,
sin15=12(132) sin15=12(232) sin15=234 \begin{aligned} & \Rightarrow \sin {{15}^{\circ }}=\sqrt{\dfrac{1}{2}\left( 1-\dfrac{\sqrt{3}}{2} \right)} \\\ & \Rightarrow \sin {{15}^{\circ }}=\sqrt{\dfrac{1}{2}\left( \dfrac{2-\sqrt{3}}{2} \right)} \\\ & \Rightarrow \sin {{15}^{\circ }}=\sqrt{\dfrac{2-\sqrt{3}}{4}} \\\ \end{aligned}
On converting 15 degrees into radian we get π12\dfrac{\pi }{12} radians, so we have,
sinπ12=234\Rightarrow \sin \dfrac{\pi }{12}=\sqrt{\dfrac{2-\sqrt{3}}{4}}
Taking sine inverse function both the sides and using the formula sin(sin1θ)=θ\sin \left( {{\sin }^{-1}}\theta \right)=\theta for θ[π2,π2]\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] we get,

& \Rightarrow \dfrac{\pi }{12}={{\sin }^{-1}}\left( \sqrt{\dfrac{2-\sqrt{3}}{4}} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \sqrt{\dfrac{2-\sqrt{3}}{4}} \right)=\dfrac{\pi }{12}.........\left( i \right) \\\ \end{aligned}$$ (2) ${{\cos }^{-1}}\dfrac{\sqrt{12}}{4}$ means the value of angle whose value of the cosine function is $\dfrac{\sqrt{12}}{4}$ in the range of angles $\left[ 0,\pi \right]$. First let us simplify the argument of the inverse cosine function given, so we get, $\begin{aligned} & \Rightarrow {{\cos }^{-1}}\dfrac{\sqrt{12}}{4}={{\cos }^{-1}}\dfrac{2\sqrt{3}}{4} \\\ & \Rightarrow {{\cos }^{-1}}\dfrac{\sqrt{12}}{4}={{\cos }^{-1}}\dfrac{\sqrt{3}}{2} \\\ \end{aligned}$ We know that the value of $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ in the range of angles $\left[ 0,\pi \right]$ so we can write the above expression as: $\begin{aligned} & \Rightarrow {{\cos }^{-1}}\dfrac{\sqrt{3}}{2}=\dfrac{\pi }{6} \\\ & \Rightarrow {{\cos }^{-1}}\dfrac{\sqrt{12}}{4}=\dfrac{\pi }{6}..........\left( ii \right) \\\ \end{aligned}$ (3) ${{\sec }^{-1}}\sqrt{2}$ means the value of angle whose value of the secant function is $\sqrt{2}$ in the range of angles $\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$. We know that $\sec \dfrac{\pi }{4}=\sqrt{2}$ and the $\dfrac{\pi }{4}$ lies the range $\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$. So we get, $\Rightarrow {{\sec }^{-1}}\sqrt{2}=\dfrac{\pi }{4}............\left( iii \right)$ Substituting the values from equations (i), (ii) and (iii) in expression E we get, $\begin{aligned} & \Rightarrow E={{\sin }^{-1}}\left[ \cot \left( \dfrac{\pi }{12}+\dfrac{\pi }{6}+\dfrac{\pi }{4} \right) \right] \\\ & \Rightarrow E={{\sin }^{-1}}\left[ \cot \left( \dfrac{\pi }{2} \right) \right] \\\ \end{aligned}$ We know that $\cot \dfrac{\pi }{2}=0$, so we get, $\Rightarrow E={{\sin }^{-1}}\left[ 0 \right]$ Therefore, we need to find the value of the angle whose value of the sine function is 0 and the angle must lie in the range $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. We know that $\sin 0=0$, so we get, $\begin{aligned} & \Rightarrow E={{\sin }^{-1}}\left( \sin 0 \right) \\\ & \therefore E=0 \\\ \end{aligned}$ **So, the correct answer is “Option a”.** **Note:** Note that there are many angles for which the values of trigonometric functions repeat its value as they are periodic functions with a certain period. This is the reason that certain ranges of the angles of different inverse trigonometric functions are defined as their principal values so that we get only one answer. You must remember the range of angles for all the inverse trigonometric functions. Also, try to remember the values of all the trigonometric functions for the angles ${{15}^{\circ }},{{36}^{\circ }}$ and ${{53}^{\circ }}$.