Solveeit Logo

Question

Question: The value of \({{\sin }^{-1}}\left( \cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) \r...

The value of sin1(cos(cos1cosx+sin1sinx)){{\sin }^{-1}}\left( \cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) \right), where x(π2,π)x\in \left( \dfrac{\pi }{2},\pi \right) is equal to
[a] π2\dfrac{\pi }{2}
[b] π\pi
[c] π-\pi
[d] π2-\dfrac{\pi }{2}

Explanation

Solution

Hint: Use the fact that if sinx=siny,\sin x=\sin y, then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z} and sin1x[π2,π2]{{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] and if cosx=cosy\cos x=\cos y, then x=2nπ±y,nZx=2n\pi \pm y,n\in \mathbb{Z} and cos1x[0,π]{{\cos }^{-1}}x\in \left[ 0,\pi \right]. Assume u=cos1(cosx)u={{\cos }^{-1}}\left( \cos x \right) and hence prove that u=2nπ±x,nZu=2n\pi \pm x,n\in \mathbb{Z}. Find the suitable value of n such that u[0,2π]u\in \left[ 0,2\pi \right]. Hence find the value of u. Similarly, assume v=sin1(sinx)v={{\sin }^{-1}}\left( \sin x \right) and hence prove that v=nπ+(1)nx,nZv=n\pi +{{\left( -1 \right)}^{n}}x,n\in \mathbb{Z}. Find the suitable value of n such that v[π2,π2]v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]. Hence find the value of v. Hence find the value of cos(cos1cosx+sin1sinx)\cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) and hence evaluate the given expression.

Complete step-by-step answer:
Let u=cos1cosxu={{\cos }^{-1}}\cos x
We know that if y=cos1xx=cosyy={{\cos }^{-1}}x\Rightarrow x=\cos y
Hence, we have
cosu=cosx\cos u=\cos x
We know that if cosx=cosy\cos x=\cos y, then x=2nπ±y,nZx=2n\pi \pm y,n\in \mathbb{Z}
Hence, we have
u=2nπ±x,nZu=2n\pi \pm x,n\in \mathbb{Z}
We know that cos1x[0,π]{{\cos }^{-1}}x\in \left[ 0,\pi \right]
Hence, we have u[0,π]u\in \left[ 0,\pi \right]
Now since x(π2,π)x\in \left( \dfrac{\pi }{2},\pi \right), we have x[0,π]x\in \left[ 0,\pi \right]
Hence, we have
u=xu=x
Now, let v=sin1sinxv={{\sin }^{-1}}\sin x
Hence, we have
sinv=sinx\sin v=\sin x
We know that if sinx=siny,\sin x=\sin y, then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}
Hence, we have
v=nπ+(1)nxv=n\pi +{{\left( -1 \right)}^{n}}x
Since sin1x[π2,π2]{{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], we have
v[π2,π2]v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]
Now since x(π2,π),x\in \left( \dfrac{\pi }{2},\pi \right), we have πx[π2,π2]\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]
Hence, we have
v=πxv=\pi -x
Hence, we have
sin1sinx+cos1cosx=v+u=πx+x=π{{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi
Hence, we have
cos(sin1sinx+cos1cosx)=cosπ=1\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1
We know that sin1(x)=sin1x{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x
Hence, we have
sin(cos(sin1sinx+cos1cosx))=sin1(1)=sin11\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1
We know that sin1(1)=π2{{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}
Hence, we have
sin(cos(sin1sinx+cos1cosx))=π2\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}
Hence option [d] is correct.

Note: Alternative solution:
We know that
{{\sin }^{-1}}\sin \left( x \right)=\left\\{ \begin{matrix} \vdots \\\ -\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\\ x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\\ \pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\\ \vdots \\\ \end{matrix} \right. and {{\cos }^{-1}}\cos x=\left\\{ \begin{matrix} \vdots \\\ 2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\\ x,x\in \left[ 0,\pi \right] \\\ 2\pi -x,x\in \left[ \pi ,2\pi \right] \\\ \vdots \\\ \end{matrix} \right.
Using these definitions, we can find the value of the above expression.
Graph of sin1sinx{{\sin }^{-1}}\sin x:

Graph of cos1cosx{{\cos }^{-1}}\cos x: