Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of sec[tan1b+abatan1ab]\sec\left[\tan^{-1}\frac{b+a}{b-a}-\tan^{-1}\frac{a}{b}\right] =

A

2

B

2\sqrt2

C

4

D

1

Answer

2\sqrt2

Explanation

Solution

tan1b+abatan1ab=tan1b+abaab1+b+abaabtan^{-1} \frac{b+a}{b-a} - tan^{-1} \frac{a}{b} = tan^{-1}\frac{ \frac{b+a}{b-a}-\frac{a}{b}}{1+ \frac{b+a}{b-a}\cdot\frac{a}{b}} =tan1b2+abab+a2b2ab+ab+a2= tan^{-1} \frac{b^{2}+ab-ab+a^{2}}{b^{2}-ab+ab+a^{2}} =tan1a2+b2a2+b2= tan^{-1} \frac{a^{2}+b^{2}}{a^{2}+b^{2}} =tan1=π4= tan^{-1} = \frac{\pi}{4} \therefore required value =sec(π4)=2= sec\left( \frac{\pi }{4}\right) = \sqrt{2}