Question
Question: The value of \(\sec 40^\circ + \sec 80^\circ + \sec 160^\circ \) will be A. 4 B. -4 C. 6 D. ...
The value of sec40∘+sec80∘+sec160∘ will be
A. 4
B. -4
C. 6
D. 8
Solution
First convert the secant into cosine term by the formula secθ=cosθ1. After that take LCM of the terms. Then find the value of the numerator by applying the formulacosAcosB=21(cos(A+B)cos(A−B)). To find the value of the denominator part, multiply and divide the term by 8sin40∘ and apply the formula 2sinAsinB=sin2A. After that substitute the value and do calculations to get the desired result.
Complete step-by-step solution:
As we know that secθ=cosθ1. Then,
⇒sec40∘+sec80∘+sec160∘=cos40∘1+cos80∘1+cos160∘1
Take LCM of the term,
⇒sec40∘+sec80∘+sec160∘=cos40∘cos80∘cos160∘cos80∘cos160∘+cos40∘cos160∘+cos40∘cos80∘..............….. (1)
Now, take the numerator part,
⇒cos80∘cos160∘+cos40∘cos160∘+cos40∘cos80∘
We know that,
cosAcosB=21(cos(A+B)cos(A−B))
Apply the formula in the above expression,
⇒21(cos(80∘+160∘)+cos(160∘−80∘))+21(cos(40∘+160∘)+cos(160∘−40∘)) \+21(cos(40∘+80∘)+cos(80∘−40∘))
Take 21 common from each term,
⇒21(cos240∘+cos80∘+cos200∘+cos120∘+cos120∘+cos40∘)
Substitute the values,
⇒21(−21+cos80∘+cos200∘−21−21+cos40∘)
We know that,
cosA+cosB=2cos(2A+B)cos(2A−B)
Applying the formula in the above expression,
⇒21(−23+cos80∘+2cos(2200∘+40∘)cos(2200∘−40∘))
Simplify the terms,
⇒21(−23+cos80∘+2cos120∘cos80∘)
Substitute the value of cos120∘,
⇒21(−23+cos80∘+2×−21×cos80∘)
Cancel out the common factors,
⇒21(−23+cos80∘−cos80∘)
Subtract the terms,
⇒21×−23
Multiply the terms,
⇒−43
So, the value of the numerator is −43.
Now, take the denominator part,
⇒cos40∘cos80∘cos160∘
Multiply and divide the term by 8sin40∘,
⇒cos40∘cos80∘cos160∘×8sin40∘8sin40∘
Simplify the terms,
⇒8sin40∘4×(2sin40∘cos40∘)cos80∘cos160∘
We know that,
sin2θ=2sinθcosθ
Apply the formula in the above expression,
⇒8sin40∘4sin80∘cos80∘cos160∘
Simplify the terms,
⇒8sin40∘2×(2sin80∘cos80∘)cos160∘
Again, apply the above formula,
⇒8sin40∘2sin160∘cos160∘
Apply the formula again,
⇒8sin40∘sin320∘
As we know,
sin(360∘−θ)=−sinθ
Apply in the expression,
⇒8sin40∘−sin40∘
Cancel out the common terms,
⇒−81
So, the value of the denominator is −81.
Substitute the value of numerator and denominator in equation (1),
⇒sec40∘+sec80∘+sec160∘=−81−43
Simplify the terms,
∴sec40∘+sec80∘+sec160∘=6
Thus, the value of sec20∘+sec40∘+sec80∘ is 6.
Hence, option (C) is the correct answer.
Note: In case of some random degree angle in trigonometric don’t try to find out the value of that term rather try to solve the problem by manipulating in degree by using different trigonometric identities. One of them used has been mentioned above.