Solveeit Logo

Question

Question: The value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is equal to \[\left( a ...

The value of sec2θ+cosec2θ{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta is equal to
(a)tan2θ+cot2θ\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta
(b)sec2θ.cosec2θ\left( b \right){{\sec }^{2}}\theta .{{\operatorname{cosec}}^{2}}\theta
(c)secθ.cosecθ\left( c \right)\sec \theta .\operatorname{cosec}\theta
(d)sin2θ.cos2θ\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta
(e)1\left( e \right)1

Explanation

Solution

Hint : We have to evaluate the value of sec2θ+cosec2θ{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta first and we use reciprocal identity secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cosecθ=1sinθ.\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. Then we add the term by using the identity cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 and in the end we again use the reciprocal identity to get the solution in standard form as asked.

Complete step-by-step answer :
We have to find the value of cosec2θ+sec2θ.{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta . We know that cosecθ=1sinθ,\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }, and we have seen that secθ=1cosθ.\sec \theta =\dfrac{1}{\cos \theta }.
Using this in cosec2θ+sec2θ,{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta , we have,
cosec2θ+sec2θ=(1sinθ)2+(1cosθ)2{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}
As (θ)2=θ2{{\left( \theta \right)}^{2}}={{\theta }^{2}} we get,
cosec2θ+sec2θ=1sin2θ+1cos2θ\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }
Now we take the LCM of sin2θ{{\sin }^{2}}\theta and cos2θ{{\cos }^{2}}\theta to add the terms
cos2θ+sin2θsin2θcos2θ\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }
As we know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 we get,
1sin2θcos2θ\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }
We also know that a2=(a)2{{a}^{2}}={{\left( a \right)}^{2}}
(1sinθ)2(1cosθ)2\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}
Again using the reciprocal identity, we know that,
1sinθ=cosecθ\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta
1cosθ=secθ\dfrac{1}{\cos \theta }=sec\theta
We get,
=(cosecθ)2.(secθ)2={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}
=cosec2θ.sec2θ={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta
So, the correct answer is “Option B”.

Note : We can check how other options are not correct solutions. Let us take θ=45.\theta ={{45}^{\circ }}.
(a)tan2θ+cot2θ=tan245+cot245\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}
We know that tan45=cot45=1.\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.
1+1=2\Rightarrow 1+1=2
While at θ=45,\theta ={{45}^{\circ }},
sec2θ+cosec2θ=sec245+cosec245{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}
We know that sec45=cos45=2\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}
sec2θ+cosec2θ=(2)2+(2)2\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}
sec2θ+cosec2θ=2+2\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2
sec2θ+cosec2θ=4........(i)\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)
Therefore, we get that sec2θ+cosec2θ{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta is not equal to tan2θ+cot2θ.{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .
(c)secθ.cosecθ\left( c \right)\sec \theta .\operatorname{cosec}\theta
At θ=45,\theta ={{45}^{\circ }}, we know that,
sec45=cosec45=2\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}
So, we get,
secθ.cosecθ=2×2\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}
secθ.cosecθ=2\Rightarrow \sec \theta .\operatorname{cosec}\theta =2
Again using (i) and the above value, we get, secθ.cosecθ\sec \theta .\operatorname{cosec}\theta is not equal to sec2θ+cosec2θ.{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .
(d)sin2θ.cos2θ\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta
At θ=45,\theta ={{45}^{\circ }}, we get,
sin2θ.cos2θ=sin245.cos245{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}
As, sin45=cos45=12,\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}, we get,
sin2θ.cos2θ=(12)2×(12)2\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}
sin2θ.cos2θ=12×12\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}
Solving further, we get, sin2θ.cos2θ=14{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4} at θ=45.\theta ={{45}^{\circ }}.
So using (i) and above, we again get, sin2θ.cos2θ{{\sin }^{2}}\theta .{{\cos }^{2}}\theta is not equal to sec2θ+cosec2θ.{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .
(e) 1
At θ=45,\theta ={{45}^{\circ }}, 1 is always 1.
But from (i), we have
sec2θ+cosec2θ=4{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4 at θ=45.\theta ={{45}^{\circ }}.
So, 1 is not equal to sec2θ+cosec2θ.{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .
So, 1 is not equal to sec2θ+cosec2θ.{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .