Question
Question: The value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is equal to \[\left( a ...
The value of sec2θ+cosec2θ is equal to
(a)tan2θ+cot2θ
(b)sec2θ.cosec2θ
(c)secθ.cosecθ
(d)sin2θ.cos2θ
(e)1
Solution
Hint : We have to evaluate the value of sec2θ+cosec2θ first and we use reciprocal identity secθ=cosθ1 and cosecθ=sinθ1. Then we add the term by using the identity cos2θ+sin2θ=1 and in the end we again use the reciprocal identity to get the solution in standard form as asked.
Complete step-by-step answer :
We have to find the value of cosec2θ+sec2θ. We know that cosecθ=sinθ1, and we have seen that secθ=cosθ1.
Using this in cosec2θ+sec2θ, we have,
cosec2θ+sec2θ=(sinθ1)2+(cosθ1)2
As (θ)2=θ2 we get,
⇒cosec2θ+sec2θ=sin2θ1+cos2θ1
Now we take the LCM of sin2θ and cos2θ to add the terms
⇒sin2θcos2θcos2θ+sin2θ
As we know that cos2θ+sin2θ=1 we get,
⇒sin2θcos2θ1
We also know that a2=(a)2
⇒(sinθ1)2(cosθ1)2
Again using the reciprocal identity, we know that,
sinθ1=cosecθ
cosθ1=secθ
We get,
=(cosecθ)2.(secθ)2
=cosec2θ.sec2θ
So, the correct answer is “Option B”.
Note : We can check how other options are not correct solutions. Let us take θ=45∘.
(a)tan2θ+cot2θ=tan245∘+cot245∘
We know that tan45∘=cot45∘=1.
⇒1+1=2
While at θ=45∘,
sec2θ+cosec2θ=sec245∘+cosec245∘
We know that sec45∘=cos45∘=2
⇒sec2θ+cosec2θ=(2)2+(2)2
⇒sec2θ+cosec2θ=2+2
⇒sec2θ+cosec2θ=4........(i)
Therefore, we get that sec2θ+cosec2θ is not equal to tan2θ+cot2θ.
(c)secθ.cosecθ
At θ=45∘, we know that,
⇒sec45∘=cosec45∘=2
So, we get,
secθ.cosecθ=2×2
⇒secθ.cosecθ=2
Again using (i) and the above value, we get, secθ.cosecθ is not equal to sec2θ+cosec2θ.
(d)sin2θ.cos2θ
At θ=45∘, we get,
sin2θ.cos2θ=sin245∘.cos245∘
As, sin45∘=cos45∘=21, we get,
⇒sin2θ.cos2θ=(21)2×(21)2
⇒sin2θ.cos2θ=21×21
Solving further, we get, sin2θ.cos2θ=41 at θ=45∘.
So using (i) and above, we again get, sin2θ.cos2θ is not equal to sec2θ+cosec2θ.
(e) 1
At θ=45∘, 1 is always 1.
But from (i), we have
sec2θ+cosec2θ=4 at θ=45∘.
So, 1 is not equal to sec2θ+cosec2θ.
So, 1 is not equal to sec2θ+cosec2θ.