Solveeit Logo

Question

Question: The value of \({{\sec }^{2}}\theta =\) A. \(1-{{\cos }^{2}}\theta \) B. \(1-{{\tan }^{2}}\theta ...

The value of sec2θ={{\sec }^{2}}\theta =
A. 1cos2θ1-{{\cos }^{2}}\theta
B. 1tan2θ1-{{\tan }^{2}}\theta
C. 1+tan2θ1+{{\tan }^{2}}\theta
D. 1+cot2θ1+{{\cot }^{2}}\theta

Explanation

Solution

Hint : We use the inverse relations like secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }. We also have sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta . We use the identity formula of sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to find the simplified form of sec2{{\sec }^{2}} to find the exact relation with ratio tan.

Complete step-by-step answer :
We know the inverse trigonometric relation secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }.
Taking square on both sides we get sec2θ=1cos2θ{{\sec }^{2}}\theta =\dfrac{1}{{{\cos }^{2}}\theta }.
We now change the value of the numerator using the identity of sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
So, we can write sec2θ=1cos2θ=sin2θ+cos2θcos2θ{{\sec }^{2}}\theta =\dfrac{1}{{{\cos }^{2}}\theta }=\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }.
Now we need to simplify the division to get the required relation.
We get sec2θ=sin2θcos2θ+cos2θcos2θ=1+sin2θcos2θ{{\sec }^{2}}\theta =\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }+\dfrac{{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }=1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }.
We also have the indices formula of ambm=(ab)m\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}.
Applying the formula, we get sec2θ=1+(sinθcosθ)2{{\sec }^{2}}\theta =1+{{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}.
We know the trigonometric relation of sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta .
The final outcome will be sec2θ=1+(sinθcosθ)2=1+tan2θ{{\sec }^{2}}\theta =1+{{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}=1+{{\tan }^{2}}\theta .
The correct option is C.
So, the correct answer is “Option C”.

Note : We know that the identity formula of sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 is called the Pythagoras’ formula. We can also convert to other relations using other trigonometric ratios.