Solveeit Logo

Question

Question: The value of \({{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\p...

The value of sec1[14k=010(sec(7π12+kπ2)sec(7π12+(k+1)π2))]{{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right] in the interval [π4,3π4]\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right] equals.

Explanation

Solution

To solve this question we will only solve and keep simplifying the brackets by using value of standard trigonometric values and inverse trigonometric values. After the appropriate simplification, we will expand the summation expression and hence, we will end up with sec1(1){{\sec }^{-1}}(1), which we know is equals to 0.

Complete step-by-step answer:
Now, we have sec1[14k=010(sec(7π12+kπ2)sec(7π12+(k+1)π2))]{{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right] and we have to find its value in the interval of [π4,3π4]\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right].
So, to get the value we will solve the summation and simplify the brackets.
Now, sec1[14k=010(sec(7π12+kπ2)sec(7π12+(k+1)π2))]{{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]
We can write above expression as
sec1[14k=010(sec(7π12+kπ2)sec(7π12+kπ2+π2))]{{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) \right)} \right]
We know that, sec(π2+θ)=cosecθ\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta
So, we can write sec(7π12+kπ2+π2)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) as cosec(7π12+kπ2)-cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)
So, we have sec1[14k=010(sec(7π12+kπ2)cosec(7π12+kπ2))]{{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) \right)} \right]
We know that, secx=1cosx\sec x=\dfrac{1}{\cos x} and cosecx=1sinxcosecx=\dfrac{1}{sinx}
So, we can write sec(7π12+kπ2)\sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right) as 1cos(7π12+kπ2)\dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} and cosec(7π12+kπ2)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) as 1sin(7π12+kπ2)\dfrac{1}{sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}
So, we have sec1[14k=010(1cos(7π12+kπ2)sin(7π12+kπ2))]{{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]
Multiplying, both numerator and denominator of summation by 2, we get
sec1[14k=010(22cos(7π12+kπ2)sin(7π12+kπ2))]{{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]
We know that, 2sinxcosx=sin2x2\sin x\cos x=\sin 2x ,
So, we can write denominator 2cos(7π12+kπ2)sin(7π12+kπ2)2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) as sin2(7π12+kπ2)sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)
So, we have sec1[14k=010(2sin2(7π12+kπ2))]{{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]
On simplifying, we get
sec1[14k=010(2sin(7π6+kπ))]{{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]
Or, sec1[12k=010(1sin(7π6+kπ))]{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]
on solving, we get
sec1[12k=010(1sin(π6+kπ+π))]{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+k\pi +\pi \right)} \right)} \right]
On re-arranging, we get
sec1[12k=010(1sin(π6+π(k+1)))]{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)} \right)} \right]
We know that sin(kπ+θ)=(1)ksinθ\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta
So, we can write sin(π6+π(k+1))sin\left( \dfrac{\pi }{6}+\pi (k+1) \right), as (1)(k+1)sin(π6){{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)
Also, we know that sinπ6=12\sin \dfrac{\pi }{6}=\dfrac{1}{2}
So, we can write (1)(k+1)sin(π6){{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right) as (1)(k+1)2\dfrac{{{(-1)}^{(k+1)}}}{2}
So, we have sec1[12k=010(1(1)(k+1)2)]{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\dfrac{{{(-1)}^{(k+1)}}}{2}} \right)} \right]
On solving, we get
sec1[12k=010(2(1)(k+1))]{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{{{(-1)}^{(k+1)}}} \right)} \right]
Or, sec1[1k=010(1(1)(k+1))]{{\sec }^{-1}}\left[ -1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)} \right]
Now, on expanding k=010(1(1)(k+1))\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}, we get k=010(1(1)(k+1))=1+11+11+11+11+11\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1+1-1+1-1+1-1+1-1+1-1
On simplifying, we get k=010(1(1)(k+1))=1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1
So, we have sec1[1×1]{{\sec }^{-1}}\left[ -1\times -1 \right]
Or, sec1[1]{{\sec }^{-1}}\left[ 1 \right]
We know that sec1[1]=0{{\sec }^{-1}}\left[ 1 \right]=0
So, value of sec1[14k=010(sec(7π12+kπ2)sec(7π12+(k+1)π2))]{{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right] in the interval [π4,3π4]\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right] equals to 0.

Note: To, solve such question one must know the inverse trigonometric function properties such as sec1[1]=0{{\sec }^{-1}}\left[ 1 \right]=0 and trigonometric identities such as sec(π2+θ)=cosecθ\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta , secx=1cosx\sec x=\dfrac{1}{\cos x},cosecx=1sinxcosecx=\dfrac{1}{sinx} and very important sin(kπ+θ)=(1)ksinθ\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta and one must also know how to open summation function. Try not to make any silly mistake as this will make the final answer wrong.