Solveeit Logo

Question

Question: The value of \[S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{...

The value of S=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty , then S is equal to
A.e2{{e}^{2}}
B.a2{{a}^{2}}
C.2a{{2}^{a}}
D.2x{{2}^{x}}

Explanation

Solution

Hint: According to the question, we have the series, S=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty . We know the expansion of ex{{e}^{x}} , ex=1+x1!+x22!+x22!+............{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty . Replace x by xloge2x{{\log }_{e}}2 in the expansion of ex{{e}^{x}} . Using the formula mlogn=lognmm\log n=\log {{n}^{m}} , solve xloge2x{{\log }_{e}}2 . Now, we also know the formula, elogex=x{{e}^{{{\log }_{e}}x}}=x . Use this formula and solve it further.

Complete step-by-step answer:
According to the question, it is given that our series is,
S=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty ……………………….(1)
Here, we have terms like factorials in the above equation. So, we have to think about some series which includes terms like factorials and also the summation should be known to us.
Here, we can think of the expansion of ex{{e}^{x}} . The expansion of ex{{e}^{x}} is
ex=1+x1!+x22!+x22!+............{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{2}}}{2!}+............\infty ………………….(2)
Now, replacing x by xloge2x{{\log }_{e}}2 in equation (2), we get
exloge2=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty ………………..(2)
We know the formula that, mlogn=lognmm\log n=\log {{n}^{m}} .
Now, using this formula in equation (2), we get
exloge2=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................{{e}^{x{{\log }_{e}}2}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty
eloge2x=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty …………………..(3)
We also know the formula, elogex=x{{e}^{{{\log }_{e}}x}}=x .
Using this formula in equation (3), we get
eloge2x=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................\Rightarrow {{e}^{{{\log }_{e}}{{2}^{x}}}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty
2x=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................\Rightarrow {{2}^{x}}=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty …………………..(4)
From equation (1), we have S=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty .
On comparing equation (1) and equation (4), we get
S=2xS={{2}^{x}} .
So, the value of x is 2x{{2}^{x}} .
Hence, the correct option is option (D).

Note: For solving this type of questions, one must remember the expansion of ex{{e}^{x}} . In this question, one may think to multiply S by xloge2x{{\log }_{e}}2 and then subtract it from S.
S=1+xloge21!+x2(loge2)22!+x3(loge2)33!+................S=1+\dfrac{x{{\log }_{e}}2}{1!}+\dfrac{{{x}^{2}}{{({{\log }_{e}}2)}^{2}}}{2!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{3!}+................\infty
S(xloge2)=xloge2+(xloge2)21!+x3(loge2)32!+x4(loge2)43!+................S\left( x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1!}+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{2!}+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{3!}+................\infty
After subtracting we get,
S(1xloge2)=xloge2+(xloge2)21(12!11!)+x3(loge2)31(13!12!)+x4(loge2)41(14!13!)+................S\left( 1-x{{\log }_{e}}2 \right)=x{{\log }_{e}}2+\dfrac{{{(x{{\log }_{e}}2)}^{2}}}{1}\left( \dfrac{1}{2!}-\dfrac{1}{1!} \right)+\dfrac{{{x}^{3}}{{({{\log }_{e}}2)}^{3}}}{1}\left( \dfrac{1}{3!}-\dfrac{1}{2!} \right)+\dfrac{{{x}^{4}}{{({{\log }_{e}}2)}^{4}}}{1}\left( \dfrac{1}{4!}-\dfrac{1}{3!} \right)+................\infty
In the above equation, we can see that our approach made this summation even more complex to solve. So, we don’t have to approach this question by this method.