Solveeit Logo

Question

Question: The value of \(r\) for which \({}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}...

The value of rr for which
20Cr20C0+20Cr120C1+20Cr220C2++20C020Cr{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}+{}^{20}{{C}_{r-2}}{}^{20}{{C}_{2}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}
is maximum is
(a) 2020
(b) 1515
(c) 1111
(d) 1010

Explanation

Solution

We have to find the value of rr at which 20Cr20C0++20C020Cr{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}} is maximum. To do so, we will first use the Binomial expansion of nn which is given as, (1+x)n=nC0xo+nC1x+nC2x2++nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{o}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+--+{}^{n}{{C}_{n}}{{x}^{n}} with this we will expand (1+x)20{{\left( 1+x \right)}^{20}} and (1+x)40{{\left( 1+x \right)}^{40}} as we know xa.xb=xa+b{{x}^{a}}.{{x}^{b}}={{x}^{a+b}} so (1+x)20.(1+x)20=(1+x)40{{\left( 1+x \right)}^{20}}.{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{40}} , we will use this to expand (1+x)40{{\left( 1+x \right)}^{40}} . Using this, we will get the general term of (1+x)40{{\left( 1+x \right)}^{40}} . And we know for n=evenn=even Tr{{T}_{r}} is maximum at r=n2r=\dfrac{n}{2} , we will use this to get the final answer.

Complete step-by-step answer:
We are asked to find the value of rr such that
20Cr20C0+20Cr120C1+20Cr220C2++20C020Cr{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}+{}^{20}{{C}_{r-1}}{}^{20}{{C}_{1}}+{}^{20}{{C}_{r-2}}{}^{20}{{C}_{2}}+---+{}^{20}{{C}_{0}}{}^{20}{{C}_{r}} is maximum.
We know that Binomial expansion of (1+n)n{{\left( 1+n \right)}^{n}} is given as,
(1+x)n=nC0+nC1x+nC2x2++nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+--+{}^{n}{{C}_{n}}{{x}^{n}}
So for n=20n=20
(1+x)20{{\left( 1+x \right)}^{20}} will be given as,
(1+x)20=20C0+20C1x+20C2x2++20C20x20{{\left( 1+x \right)}^{20}}={}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+--+{}^{20}{{C}_{20}}{{x}^{20}}
Similarly (1+x)40{{\left( 1+x \right)}^{40}} will be written as,
(1+x)40=40C0+40C1x++40C40x40{{\left( 1+x \right)}^{40}}={}^{40}{{C}_{0}}+{}^{40}{{C}_{1}}x+--+{}^{40}{{C}_{40}}{{x}^{40}}
Now we know,
(1+x)40=(1+x)20+20{{\left( 1+x \right)}^{40}}={{\left( 1+x \right)}^{20+20}} [as xa+b=xa.xb]\left[ as\ {{x}^{a+b}}={{x}^{a}}.{{x}^{b}} \right]
So
 =(1+x)20(1+x)20\text{ }={{\left( 1+x \right)}^{20}}{{\left( 1+x \right)}^{20}}
Now putting value of (1+x)20{{\left( 1+x \right)}^{20}} from above expression, we get,
(1+x)40=(20C0+20C1x++20C20x20)(20C0+20C1x++20C20x20){{\left( 1+x \right)}^{40}}=\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)\left( {}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+--+{}^{20}{{C}_{20}}{{x}^{20}} \right)
When we expand the general term for (1+x)40{{\left( 1+x \right)}^{40}} will be given as, Tr=20C020Crxr+20C1xr.20Cr1++20Crxr.20C0{{T}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}{{x}^{r}}+{}^{20}{{C}_{1}}{{x}^{r}}.{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{{x}^{r}}.{}^{20}{{C}_{0}}
Taking xr{{x}^{r}} common , we get,
Tr=(20C020Cr+20C120Cr1++20Cr20C0)xr{{T}_{r}}=\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}
Now comparing the general with general term of (1+x)40{{\left( 1+x \right)}^{40}} which is given as 40Crxr^{40}{{C}_{r}}{{x}^{r}} we get,
(20C020Cr+20C120Cr1++20Cr20C0)xr=40Crxr\left( {}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} \right){{x}^{r}}{{=}^{40}}{{C}_{r}}{{x}^{r}}
40Cr=20C020Cr+20C120Cr1++20Cr20C0{{\Rightarrow }^{40}}{{C}_{r}}={}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}}
So maximum value of 20C020Cr+20C120Cr1++20Cr20C0{}^{20}{{C}_{0}}{}^{20}{{C}_{r}}+{}^{20}{{C}_{1}}{}^{20}{{C}_{r-1}}+---+{}^{20}{{C}_{r}}{}^{20}{{C}_{0}} in same as maximum value of 40Cr^{40}{{C}_{r}} .
We know that,
nCr{}^{n}{{C}_{r}} is maximum when r=n2r=\dfrac{n}{2}
If nn is even,
For 40Cr^{40}{{C}_{r}} , n=40n=40 which is even. So we get,
40Cr^{40}{{C}_{r}} is maximum at r=n2r=\dfrac{n}{2}
r=402=20\Rightarrow r=\dfrac{40}{2}=20

So, the correct answer is “Option (a)”.

Note: When we multiply two terms with more than 11 element then each element of first term get multiplied by other terms all elements , this same process will be done when (1+x)20{{\left( 1+x \right)}^{20}} is multiplied with (1+x)20{{\left( 1+x \right)}^{20}} with the help of this we get the general term Tr{{T}_{r}} for (1+x)40{{\left( 1+x \right)}^{40}} .