Solveeit Logo

Question

Question: The value of P(n, 1) + \(\frac{P(n,2)}{2!} + \frac{P(n,3)}{3!} + ...... + \frac{P(n,n)}{n!}\) is equ...

The value of P(n, 1) + P(n,2)2!+P(n,3)3!+......+P(n,n)n!\frac{P(n,2)}{2!} + \frac{P(n,3)}{3!} + ...... + \frac{P(n,n)}{n!} is equal to –

A

2n

B

2n – 1

C

2n–1

D

2n + 1

Answer

2n – 1

Explanation

Solution

n \end{matrix}}{\begin{matrix} n–1 \end{matrix}} + \frac{\begin{matrix} n \end{matrix}}{\begin{matrix} n–2 \end{matrix}} \times \frac{1}{\begin{matrix} 2 \end{matrix}} + \frac{\begin{matrix} n \end{matrix}}{\begin{matrix} n–3 \end{matrix}} \times \frac{1}{\begin{matrix} 3 \end{matrix}} + ....... + \frac{\begin{matrix} n \end{matrix}}{\begin{matrix} 0 \end{matrix}} \times \frac{1}{\begin{matrix} n \end{matrix}}$$ = <sup>n</sup>C<sub>1</sub> + <sup>n</sup>C<sub>2</sub> +……..<sup>n</sup>C<sub>n</sub> = 2<sup>n</sup> – <sup>n</sup>C<sub>0</sub> = 2<sup>n</sup> – 1