Solveeit Logo

Question

Question: The value of \[p{K_a}\] of iodic acid is \[\log {\text{ 6}}\] , then find the value of pH of \[1{\te...

The value of pKap{K_a} of iodic acid is log 6\log {\text{ 6}} , then find the value of pH of 1 M HIO31{\text{ M HI}}{{\text{O}}_3}solution will be:
A. log 6\log {\text{ 6}}
B. log 5\log {\text{ 5}}
C. log 4\log {\text{ 4}}
D. log 3\log {\text{ 3}}

Explanation

Solution

The pKap{K_a} of iodic acid is log 6\log {\text{ 6}}. We will find the value of Ka{K_a} with the help of pKap{K_a} of iodic acid. Then we will find the dissociation of iodic acid when it is dissolved in water to give acidic ions. With the help of concentration hydrogen ions we will find the value of pH of 1 M HIO31{\text{ M HI}}{{\text{O}}_3} solution.

Complete answer:
Since the value of pKap{K_a} is given for iodic acid we will find the value of Ka{K_a} as,
pKa = - log Kap{K_a}{\text{ = - log }}{{\text{K}}_a}
6 = - log Ka{\text{6 = - log }}{{\text{K}}_a}
Since we cannot find antilog of negative numbers we must convert it into positive value and then taking antilog both sides we get the value of Ka{K_a}
6 = log 1Ka{\text{6 = log }}\dfrac{1}{{{K_a}}}
Taking antilog both sides we get,
Ka = 0.167{K_a}{\text{ = 0}}{\text{.167}}
Now we will write the acidic reaction of iodic acid when it is dissolved in water.
HIO3 + H2 H3O+ + IO3{\text{HI}}{{\text{O}}_3}{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{H}}_3}{{\text{O}}^ + }{\text{ + I}}{{\text{O}}^{3 - }}
Since the molarity of iodine solution is given as 1 M HIO31{\text{ M HI}}{{\text{O}}_3} we can find the concentration of its ions at t = 0t{\text{ = 0}} and at t = t1t{\text{ = }}{t_1}, when dissociation of amount xx starts,
HIO3 + H2 H3O+ + IO3{\text{HI}}{{\text{O}}_3}{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{H}}_3}{{\text{O}}^ + }{\text{ + I}}{{\text{O}}^{3 - }}

Time(t)[HIO3]\left[ {HI{O_3}} \right][H3O+]\left[ {{H_3}{O^ + }} \right][IO31]\left[ {I{O_3}^{ - 1}} \right]
t = 0t{\text{ = 0}}100
t = t1t{\text{ = }}{t_1}1x1 - xxxxx

The value of Ka{K_a} from above data can be written as,
Ka = x × x1x{K_a}{\text{ = }}\dfrac{{x{\text{ }} \times {\text{ }}x}}{{1 - x}}
Ka = x21x{K_a}{\text{ = }}\dfrac{{{x^2}}}{{1 - x}}
On substituting the value of Ka{K_a} and ignoring 1x1 - x as x1x \ll 1 we can write as,
x = Kax{\text{ = }}\sqrt {{K_a}}
x = 0.167x{\text{ = }}\sqrt {0.167}
x = 0.333x{\text{ = 0}}{\text{.333}}
Therefore the concentration of H3O+{H_3}{O^ + } is equal to 0.3330.333 and we can find the value of pHpH as,
pH = - log[H3O+]pH{\text{ = - log}}\left[ {{H_3}{O^ + }} \right]
On substituting the values we get the result as,
pH = - log[0.333]pH{\text{ = - log}}\left[ {0.333} \right]
pH = log[10.333]pH{\text{ = log}}\left[ {\dfrac{1}{{0.333}}} \right]
pH = log 3pH{\text{ = log 3}}
Therefore the pHpH of 1 M HIO31{\text{ M HI}}{{\text{O}}_3}solution is log 3\log {\text{ 3}} , thus the correct option is D.

Note:
The base value of all the logarithmic values is ten. We can also use a log table for finding values of logarithmic and antilogarithmic values of various functions. For finding the acidic nature of any acid we make its dissociation in water solvent because the ions get dissociated in water solvent. Also water solvent shows a levelling effect for acids and bases.