Solveeit Logo

Question

Question: The value of \[p\] for which the function \[f\left( x \right) = \left\\{ {\begin{array}{*{20}{c}} ...

The value of pp for which the function f\left( x \right) = \left\\{ {\begin{array}{*{20}{c}} {\dfrac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}};{\text{ }}x \ne 0} \\\ {{\text{ }}12{{\left( {\log 4} \right)}^3}{\text{ }};{\text{ }}x = 0} \end{array}} \right. is continuous at x=0x = 0, is
(a) 4
(b) 2
(c) 3
(d) 1

Explanation

Solution

Here, we need to find the value of pp. A function is continuous at x=ax = a, if f(a)=limxaf(x)f\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right). We will use the given information for the point at which the function is continuous. Then, we will rewrite the expression and use limit equations to simplify the expression. Finally, we will solve the equation to find the required value of pp.

Formula Used:
A function is continuous at x=ax = a, if f(a)=limxaf(x)f\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right).
Limit equation: If xx is approaching 0, then limx0ax1x\mathop {\lim }\limits_{x \to 0} \dfrac{{{a^x} - 1}}{x} is equal to loga\log a.
Limit equation: If xx is approaching 0, then limx0sinxx\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} is equal to 1.
Limit equation: If xx is approaching 0, then limx0log(1+x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} is equal to 1.

Complete step-by-step answer:
A function is continuous at x=ax = a, if f(a)=limxaf(x)f\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right).
The given function is continuous at x=0x = 0.
Therefore, we get
f(0)=limx0f(x)f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right)
Now, since xx is approaching 0, it is not equal to 0.
Therefore, substituting f(x)=(4x1)3sin(xp)log(1+x23)f\left( x \right) = \dfrac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}} in the equation, we get
f(0)=limx0(4x1)3sin(xp)log(1+x23)\Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}
We will simplify the expression on the right hand side using limit equations.
Dividing the numerator and denominator of the fraction by x3{x^3}, we get
f(0)=limx0(4x1)3x3sin(xp)log(1+x23)x3\Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{{{\left( {{4^x} - 1} \right)}^3}}}{{{x^3}}}}}{{\dfrac{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^3}}}}}
Rewriting the equation, we get
f(0)=limx0(4x1x)3sin(xp)log(1+x23)xx2 f(0)=limx0(4x1x)3sin(xp)x×log(1+x23)x2\begin{array}{l} \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{{{4^x} - 1}}{x}} \right)}^3}}}{{\dfrac{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{x \cdot {x^2}}}}}\\\ \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{{{4^x} - 1}}{x}} \right)}^3}}}{{\dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{x} \times \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}}}\end{array}
Writing the limit before the terms, we get
f(0)=(limx04x1x)3[limx0sin(xp)x][limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\mathop {\lim }\limits_{x \to 0} \dfrac{{{4^x} - 1}}{x}} \right)}^3}}}{{\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{x}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Now, we will use limit equations to simplify the equation further.
Limit equation: If xx is approaching 0, then limx0ax1x\mathop {\lim }\limits_{x \to 0} \dfrac{{{a^x} - 1}}{x} is equal to loga\log a.
Substituting a=4a = 4 in the limit equation, we get
limx04x1x=log4\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{4^x} - 1}}{x} = \log 4
Substituting limx04x1x=log4\mathop {\lim }\limits_{x \to 0} \dfrac{{{4^x} - 1}}{x} = \log 4 in the equation f(0)=(limx04x1x)3[limx0sin(xp)x][limx0log(1+x23)x2]f\left( 0 \right) = \dfrac{{{{\left( {\mathop {\lim }\limits_{x \to 0} \dfrac{{{4^x} - 1}}{x}} \right)}^3}}}{{\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{x}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}, we get
f(0)=(log4)3[limx0sin(xp)x][limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{x}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Dividing and multiplying the denominator of the first parentheses by pp, we get
f(0)=(log4)3[limx0sin(xp)x×pp][limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{{x \times \dfrac{p}{p}}}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Rewriting the expression, we get
f(0)=(log4)3[1p×limx0sin(xp)xp][limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\left[ {\dfrac{1}{p} \times \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{{\dfrac{x}{p}}}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Limit equation: If xx is approaching 0, then limx0sinxx\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} is equal to 1.
Substituting xp\dfrac{x}{p} for xx in the limit equation, we get
limx0sinxpxp=1\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \dfrac{x}{p}}}{{\dfrac{x}{p}}} = 1
Substituting limx0sinxpxp=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \dfrac{x}{p}}}{{\dfrac{x}{p}}} = 1 in the equation f(0)=(log4)3[1p×limx0sin(xp)xp][limx0log(1+x23)x2]f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\left[ {\dfrac{1}{p} \times \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {\dfrac{x}{p}} \right)}}{{\dfrac{x}{p}}}} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}, we get
f(0)=(log4)3[1p×1][limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\left[ {\dfrac{1}{p} \times 1} \right]\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Multiplying the terms in the expression, we get
f(0)=(log4)31p[limx0log(1+x23)x2]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2}}}} \right]}}
Dividing and multiplying the denominator of the parentheses by 3, we get
f(0)=(log4)31p[limx0log(1+x23)x2×33]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{{x^2} \times \dfrac{3}{3}}}} \right]}}
Rewriting the expression, we get
f(0)=(log4)31p[13limx0log(1+x23)x23]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\dfrac{1}{3}\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{\dfrac{{{x^2}}}{3}}}} \right]}}
Limit equation: If xx is approaching 0, then limx0log(1+x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} is equal to 1.
Substituting x23\dfrac{{{x^2}}}{3} for xx in the limit equation, we get
limx0log(1+x23)x23=1\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{\dfrac{{{x^2}}}{3}}} = 1
Substituting limx0log(1+x23)x23=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{\dfrac{{{x^2}}}{3}}} = 1 in the equation f(0)=(log4)31p[13limx0log(1+x23)x23]f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\dfrac{1}{3}\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}}{{\dfrac{{{x^2}}}{3}}}} \right]}}, we get
f(0)=(log4)31p[13×1]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\dfrac{1}{3} \times 1} \right]}}
Multiplying the terms in the denominator, we get
f(0)=(log4)31p[13]\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{p}\left[ {\dfrac{1}{3}} \right]}}
f(0)=(log4)313p\Rightarrow f\left( 0 \right) = \dfrac{{{{\left( {\log 4} \right)}^3}}}{{\dfrac{1}{{3p}}}}
Rewriting the expression, we get
f(0)=3p(log4)3\Rightarrow f\left( 0 \right) = 3p{\left( {\log 4} \right)^3}
It is given that if x=0x = 0, then f(x)=12(log4)3f\left( x \right) = 12{\left( {\log 4} \right)^3}.
Therefore, we get
f(0)=12(log4)3\Rightarrow f\left( 0 \right) = 12{\left( {\log 4} \right)^3}
Comparing the equations f(0)=3p(log4)3f\left( 0 \right) = 3p{\left( {\log 4} \right)^3} and f(0)=12(log4)3f\left( 0 \right) = 12{\left( {\log 4} \right)^3}, we get
3p(log4)3=12(log4)3\Rightarrow 3p{\left( {\log 4} \right)^3} = 12{\left( {\log 4} \right)^3}
Dividing both sides by 3(log4)33{\left( {\log 4} \right)^3}, we get
3p(log4)33(log4)3=12(log4)33(log4)3\Rightarrow \dfrac{{3p{{\left( {\log 4} \right)}^3}}}{{3{{\left( {\log 4} \right)}^3}}} = \dfrac{{12{{\left( {\log 4} \right)}^3}}}{{3{{\left( {\log 4} \right)}^3}}}
Thus, we get
p=4\therefore p=4

Therefore, we get the value of pp as 4. The correct option is option (a).

Note: We simplified the right hand side expression of the equation f(0)=limx0(4x1)3sin(xp)log(1+x23)f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \left( {\dfrac{x}{p}} \right)\log \left( {1 + \dfrac{{{x^2}}}{3}} \right)}} using limit equations. This is because we put x=0x = 0 without simplifying using limit equations, then the equation will become of the form 00\dfrac{0}{0}. This should be avoided by using limit equations.